Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session1rtf6bhokfsr4bcb3t03an85ru7br2gc): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To exam the role of miR-92a/KLF2/miR-483 in the pathogenesis of metabolic syndrome.
Methods: In this study, the serum of healthy controls and patients with metabolic syndrome were collected to detect the circulating level of miR-92a and miR-483. In vitro cultured HUVECs, overexpression or suppression of miR-92a, miR-483 or KLF2 to determine the relationship among miR-92a, KLF2 and miR-483. Ang II, ox-LDL, or high glucose treatment were used to mimic the metabolic syndrome. HUVECs or HepG2 cells were treated with Telmisartan, Atorvastatin, or metformin, the miR-483 and its target gene expression was detected. In animal experiment, ob/ob mice were chose to confirm the changes of miR-92a, KLF2, and miR-483.
Results: Compared with the healthy controls, the level of miR-92a was significantly increased, while miR-483 level was remarkably decreased in the patients with metabolic syndrome. In vitro cultured HUVECS, overexpression of miR-92a significantly reduced the expression of miR-483, but overexpression of miR-483 had no effect on miR-92a. Overexpression of KLF2 could downregulate miR-483 level, while inhibition of KLF2 had the opposite effect. When HUVECs and HepG2 were stimulated with Ang II, ox-LDL and high glucose, the expression of miR-483 was significantly decreased and its target genes was increased. Anti-miR-92a could reverse the effect. Furthermore, Telmisartan, Atorvastatin, and Metformin significantly increased miR-483 expression and decreased its target gene expression, which could be reversed by miR-92a mimic. The level of miR-92a was significantly increased in HepG2 cells, which were treated with exosomes derived from endothelial cells with miR-92a overexpression. ob/ob mice showed the similar effects.
Conclusions: Endothelial dysfunction and fatty liver are critically involved in the pathogenesis of metabolic syndrome. MicroRNAs can mediate the cellular communication between vascular endothelial cells (ECs) and distal cell. Serum miR-92a level was higher in metabolic syndrome patients than controls. KLF2 is the target gene of miR-92a, which can increase the production of miR-483, miR-483 acts on its target genes CTGF, ET-1, and β-catenin to protect cell function. EC miR-92a is secreted out of cells into the blood, circulates through the blood to the liver, and continues to exert its biological effects after being absorbed by hepatocytes. LNA-miR-92a administration reversed endothelial cell damage and fatty liver caused by metabolic syndrome by affecting the KLF2/miR-483 pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jdi.14416 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!