Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Due to its toxicity, contamination with arsenic, a Group 1 carcinogen, is a significant environmental and public health issue. The toxicity of arsenic varies with its chemical form. For example, inorganic species like arsenite (AsO) and arsenate (AsO) are generally more toxic than organoarsenic compounds. However, some organoarsenic species exhibit higher toxicity than inorganic species. Therefore, the precise quantification and speciation of arsenic is necessary. Chromatographic techniques, particularly liquid chromatography coupled with inductively coupled plasma mass spectrometry (LC-ICP-MS), are widely used for arsenic speciation owing to their high sensitivity and accuracy. Gas chromatography-mass spectrometry (GC-MS) is another effective technique for detecting arsenic species after derivatization. In addition to chromatographic methods, more straightforward and cost-effective techniques are available for inorganic arsenic speciation. These include adsorption techniques, colorimetric assays such as the molybdenum blue method, hydride generation reactions, and voltammetry. Emerging technologies, such as microfluidic and electrochemical devices, enable rapid and portable analysis, facilitating in situ detection of arsenite and arsenate in environmental samples. While LC-ICP-MS remains the gold standard for comprehensive arsenic speciation, other advanced technologies provide a practical, rapid, and cost-effective approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s44211-025-00722-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!