Objectives: To assess the impact of acquisition and reconstruction factors on the robustness of radiomics within photon-counting detector CT (PCD-CT).

Methods: A phantom with twenty-eight texture materials was scanned with different acquisition and reconstruction factors including reposition, scan mode (standard vs high-pitch), tube voltage (120 kVp vs 140 kVp), slice thickness (1.0 mm vs 0.4 mm), radiation dose level (0.5 mGy, 1.0 mGy, 3.0 mGy, 5.0 mGy, vs 10.0 mGy), quantum iterative reconstruction level (0/4, 2/4, vs 4/4), and reconstruction kernel (Qr40, Qr44, vs Qr48). Thirteen sets of virtual monochromatic images at 70-keV were reconstructed. The regions of interest were drawn with rigid registrations. Ninety-three radiomics features were extracted from each material. The reproducibility of radiomics features was evaluated using the intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). The variability of radiomics features was assessed by coefficient of variation (CV) and quartile coefficient of dispersion (QCD).

Results: The percentage of features with ICC > 0.90 and CCC > 0.90 were high when repositioned (88.2% and 88.2%) and tube voltage was changed (87.1% and 87.1%), but none of the features with ICC > 0.90 and CCC > 0.90 when high-pitch scan and different slice thickness were used. The percentage of features with CV < 10% and QCD < 10% were high when repositioned (47.3% and 68.8%) and tube voltage was changed (64.2% and 71.0%), but that with CV < 10% and QCD < 10% were low between standard and high-pitch scans (16.1% and 26.9%) and slice thickness (19.4% and 29.0%).

Conclusions: The PCD-CT radiomics was robust to tube voltage, radiation dose, reconstruction strength level, and kernel, but brittle to high-pitch scan and slice thickness.

Key Points: Question The stability of radiomics features against acquisition and reconstruction factors within PCD-CT should be fully determined before academic research and clinical application. Findings The radiomics features are robust against tube voltage, radiation dose, reconstruction strength level, and kernel within PCD-CT but brittle to high-pitch scan and slice thickness. Clinical relevance The high-pitch scan and slice thickness that influence voxel size should be set with careful attention within PCD-CT, to allow a higher robustness of radiomics features before the implementation of radiomics analysis in clinical routine.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-025-11374-xDOI Listing

Publication Analysis

Top Keywords

acquisition reconstruction
12
reconstruction factors
12
radiomics features
12
robustness radiomics
8
radiomics photon-counting
8
photon-counting detector
8
impact acquisition
8
tube voltage
8
slice thickness
8
correlation coefficient
8

Similar Publications

Purpose: To achieve high-resolution, three-dimensional (3D) quantitative diffusion-weighted MR spectroscopic imaging (DW-MRSI) for molecule-specific microstructural imaging of the brain.

Methods: We introduced and integrated several innovative acquisition and processing strategies for DW-MRSI: (a) a new double-spin-echo sequence combining selective excitation, bipolar diffusion encoding, rapid spatiospectral sampling, interleaved water spectroscopic imaging data, and a special sparsely sampled echo-volume-imaging (EVI)-based navigator, (b) a rank-constrained time-resolved reconstruction from the EVI data to capture spatially varying phases, (c) a model-based phase correction for DW-MRSI data, and (d) a multi-b-value subspace-based method for water/lipids removal and spatiospectral reconstruction using learned metabolite subspaces, and e) a hybrid subspace and parametric model-based parameter estimation strategy. Phantom and in vivo experiments were performed to validate the proposed method and demonstrate its ability to map metabolite-specific diffusion parameters in 3D.

View Article and Find Full Text PDF

Whole-body Positron Emission Tomography (PET) imaging is often hindered by respiratory motion during acquisition, causing significant degradation in the quality of reconstructed activity images. An additional challenge in PET/CT imaging arises from the respiratory phase mismatch between CT-based attenuation correction and PET acquisition, leading to attenuation artifacts. To address these issues, we propose two new, purely data-driven methods for the joint estimation of activity, attenuation, and motion in respiratory self-gated time-of-flight (TOF) PET.

View Article and Find Full Text PDF

Ultra-high temporal resolution 4D angiography using arterial spin labeling with subspace reconstruction.

Magn Reson Med

May 2025

Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

Purpose: To achieve ultra-high temporal resolution non-contrast 4D angiography with improved spatiotemporal fidelity.

Methods: Continuous data acquisition using 3D golden-angle sampling following an arterial spin labeling preparation allows for flexibly reconstructing 4D dynamic angiograms at arbitrary temporal resolutions. However, k-space data is often temporally "binned" before image reconstruction, negatively affecting spatiotemporal fidelity and limiting temporal resolution.

View Article and Find Full Text PDF

MRI is the most effective method for screening high-risk breast cancer patients. While current exams primarily rely on the qualitative evaluation of morphological features before and after contrast administration and less on contrast kinetic information, the latest developments in acquisition protocols aim to combine both. However, balancing between spatial and temporal resolution poses a significant challenge in dynamic MRI.

View Article and Find Full Text PDF

Background: Private equity (PE) investment in healthcare has expanded rapidly, particularly in plastic surgery, where rising demand for aesthetic procedures presents attractive financial opportunities. While PE backing may enhance operational efficiencies, concerns exist regarding its potential impact on care quality, patient outcomes, and healthcare costs.

Objectives: This study examines PE acquisitions of U.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!