Nanoplastics (NPs) are increasingly prevalent in the environment, posing potential risks to agricultural systems and the food web. Despite this, currently it lacks comprehensive evaluation on NPs detection and quantification techniques, which is critical for quantitatively understanding the fate and transport of NPs. To address this gap, our study systematically assesses and compares advanced analytical tools for tracking different types of NPs (derived from both top-down and bottom-up approaches) from soil to plants. For identifying and quantifying NPs from environmental samples, pyrolysis - gas chromatography - mass spectrometry (Py-GC-MS) and confocal-Raman spectroscopy demonstrate promise. For laboratory study, inductively coupled plasma mass spectrometry (ICP-MS) along with metal doped NPs enables good sensitivity for tracking NPs in plant system. Our results demonstrated a substantial NPs internalization, 1.09 × 10 ¹ ¹ NPs per gram in shoots and 1.52 × 10 ¹ ¹ NPs per gram in roots, by wheat seedlings after five days of exposure, leading to a notable 77.26 % reduction in biomass. This study highlights the importance of integrating multiple techniques to overcome the limitations of each individual technique and provides quantitative insight into the detection of NPs within plant systems, contributing to the improvement of methodology for NPs related research in environmental and agricultural fields.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.137357DOI Listing

Publication Analysis

Top Keywords

nps
12
nps environmental
8
mass spectrometry
8
nps plant
8
nps gram
8
tracking translocation
4
translocation nanoplastics
4
nanoplastics soil
4
soil plant
4
plant comparison
4

Similar Publications

Flexural properties of rapidly prototyped denture base materials: the effect of nanoparticle addition and post-curing duration .

Front Dent Med

February 2025

Research Center for Digital Technologies in Dentistry and CAD/CAM, Department of Dentistry, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria.

Objectives: The flexural strength and elastic modulus of rapidly prototyped denture base materials are affected by numerous factors including reinforcement with nanoparticles (NPs) and post-curing duration (PCD), though the effect of these two factors together has been overlooked. The present study tested the effect of nanodiamonds (NDs) or silicon dioxide nanoparticles (SNPs) with various PCDs on the flexural strength and elastic modulus of rapidly prototyped denture base materials.

Methods: To measure the flexural strength and elastic modulus, bar-shaped specimens (64 × 10 × 3.

View Article and Find Full Text PDF

Gastric cancer (GC) is a prevalent malignant tumor that originates from the epithelial cells of the gastric mucosa, predominantly in the form of adenocarcinoma. Extensive research has confirmed the significant role of autophagy in the initiation, progression, and chemoresistance of GC. The potential of traditional Chinese medicine (TCM) to exert anti-tumor effects by modulating autophagy has been demonstrated, particularly in the context of GC prevention and treatment.

View Article and Find Full Text PDF

Background: Selenium nanoparticles (SeNPs) show high therapeutic potential. SeNPs obtained by green synthesis methods, using commonly available plants, are an attractive alternative to nanoparticles obtained by classical, chemical methods. The green synthesis process uses environmentally friendly reagents, which offer an eco-friendly advantage.

View Article and Find Full Text PDF

Background: In the human placenta, we have detected the MPs by Raman microspectroscopy analysis and, for the first time, with transmission electron microscopy. MPs fragments have been localized in different compartments of placental tissue, free in the cytoplasm and within organelles like lysosomes. Moreover, their presence has been correlated with ultrastructural alterations of some cell organelles, typical of metabolic stress, mainly dilated rough endoplasmic reticulum and numerous swollen electrodense mitochondria, as well as signs derived from involuting organelles.

View Article and Find Full Text PDF

Background: The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 interacts with the angiotensin-converting enzyme 2 (ACE2) receptor in humans. To date, numerous SARS-CoV-2 variants, particularly those involving mutations in the RBD, have been identified. These variants exhibit differences in transmission, pathogenicity, diagnostics, and vaccine efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!