High-throughput screening of thermal tolerant candidate genes in the ivory shell (Babylonia areolata) based on the yeast strain INVSc1.

Comp Biochem Physiol Part D Genomics Proteomics

School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou 570228, Hainan, China; School of Breeding and Multiplication, Hainan University, Sanya 572022, China. Electronic address:

Published: June 2025

Global climate warming and frequent heatwaves present significant threats to the growth and survival of marine organisms. The ivory shell, Babylonia areolata, plays a crucial role in marine aquaculture as a widely distributed mollusk in tropical and subtropical seas. However, limited research has been conducted on its molecular mechanisms in response to heat stress. This study aims to explore thermal-tolerant related genes and regulatory pathways by constructing a cDNA library under heat stress and using a yeast-based high-throughput screening method. Following exposure of three populations to acute heat stress, a heat stress cDNA library was constructed with a capacity of 1.104 × 10, containing 2.208 × 10 clones. Subsequently, the library was transformed into yeast INVSc1 and underwent high-temperature screening at 39 °C. All positive clones were then subjected to next-generation sequencing (NGS) for rapid identification of 1148 candidate genes associated with thermal tolerance. Enrichment analysis revealed that these genes were significantly enriched in seven KEGG pathways, including Protein processing in endoplasmic reticulum, Ribosome and Ubiquitin mediated proteolysis. Additionally, through first-generation sequencing of 96 randomly selected positive clones at 39 °C, we identified 51 unique sequences associated with heat stress which included previously reported genes like EEF2, HSPB1, UBC and HSPA4. Subsequent yeast heat tolerance experiments further validated the essential role played by these 51 genes in response to thermal stress conditions. Finally, RNA-seq data provided evidence for upregulated expression levels of these genes during exposure to elevated temperatures. This study successfully constructed the first cDNA library for B. areolata under heat stress conditions, identified key pathways and candidate genes associated with thermal tolerance, and demonstrated the applicability of yeast high-throughput screening methods in investigating stress resistance traits in invertebrates. These findings contribute to a deeper understanding of the strategies employed by B. areolata to respond to heat stress, and provide technical support for studying the molecular mechanisms underlying abiotic stress responses in aquatic organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbd.2025.101428DOI Listing

Publication Analysis

Top Keywords

heat stress
28
high-throughput screening
12
candidate genes
12
cdna library
12
stress
10
genes
8
ivory shell
8
shell babylonia
8
babylonia areolata
8
molecular mechanisms
8

Similar Publications

Introduction: (DS) is a prospective source of bioactive carotenoids, including beta-carotene, zeaxanthin, and omega-3 fatty acids. The effect of dietary supplementation of DS on the productive performance, immune response, and egg quality of heat-stressed laying hens has not been comprehensively studied. We investigated how dietary supplementation affects the deposition of bioactive carotenoids and omega-3 fatty acids in egg yolks of laying hens experiencing summer heat stress, as determined by the Temperature-Humidity Index (THI).

View Article and Find Full Text PDF

The present study was focused on assessing the molten salt-induced hot corrosion resistance of selective laser melting (SLM) manufactured Inconel 625 at 900 °C for 96 h and investigating the possibility of improving the superalloy's corrosion resistance by applying a pre-oxidation heat treatment. The material's hot corrosion properties were assessed in a heat-treated state (heat treatments performed at 1000 °C/1 h and 1150 °C/1 h, respectively) with and without pre-oxidation. The heat treatment at 1000 °C promoted the columnar dendrite morphology evolution, while the heat treatment at 1150 °C promoted the equiaxed dendrite morphology evolution.

View Article and Find Full Text PDF

Modeling of friction stir welding (FSW) is challenging, as there are large gradients in both strain rate and temperature (typically between 450 and 500 °C in aluminum alloys) that must be accounted for in the constitutive law of the material being joined. Constitutive laws are most often calibrated using flow stresses from hot compression or hot torsion testing, where strain rates are much lower than those seen in the stir zone of the FSW process. As such, the current work employed a recently developed method to measure flow stresses at high strain rates and temperatures in AA 2219-T67, and these data were used in the development of a finite element (FE) simulation of FSW.

View Article and Find Full Text PDF

Effects of Prior Microstructure on the Properties of Induction-Hardened JIS SCM440 Steel.

Materials (Basel)

February 2025

Department of Mechanical and Materials Engineering, Tatung University, Taipei 104-327, Taiwan.

JIS SCM440 steel is commonly used in precision parts after induction-hardening heat treatment. The fatigue behavior of induction-hardening parts largely depends on the combination of hardening depth and the magnitude and distribution of hardness and compressive residual stress. Therefore, it is necessary to determine the effects of different prior microstructures on the properties of JIS SCM440 steel after induction hardening.

View Article and Find Full Text PDF

Investigation of Distortion, Porosity and Residual Stresses in Internal Channels Fabricated in Maraging 300 Steel by Laser Powder Bed Fusion.

Materials (Basel)

February 2025

Department of Mechatronics and Mechanical Systems Engineering, Polytechnic School of Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2231, Sao Paulo 05508-030, Brazil.

The use of parts containing internal channels fabricated by laser powder bed fusion (LPBF) in maraging steel is gaining attention within industry, due to the promising application of the material in molds and forming tools. However, LPBF processing has issues when it comes to unsupported channels, leading to defects that can result in a limited performance and shortened component life. The present study aims to provide a detailed evaluation of the metallurgical effects arising from the LPBF printing of channels made of maraging 300 steel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!