Defects are common features in hematite that arise from deviations from the perfect mineral crystal structure. Vacancy defects have been shown to significantly enhance arsenate (As) immobilization by hematite. However, the contributions from vacancy defects on different exposed facets of hematite have not been fully quantified. In this study, hematite samples with various morphologies were pretreated with sodium borohydride (NaBH) to generate oxygen vacancy defects (OVDs), analyzed quantitatively using extended X-ray absorption fine structure (EXAFS) and thermogravimetric analysis (TG). Batch experiments revealed that the OVDs on different exposed facets showed significant variations in improving arsenate adsorption, i.e., the quantitative enhancement of arsenate adsorption amount per unit OVD concentration (Δ/) followed the sequence of (110) facet (80.05 μmol/mmol) > (001) facet (31.85 μmol/mmol) > (012) facet (13.14 μmol/mmol). The underlying mechanism by which OVDs affect arsenate adsorption across different exposed facets of hematite was studied. The results reveal that the tremendous improvement of arsenate adsorption caused by OVDs on the (110) facet compared to (001) and (012) facets was attributed to their stronger bonding strength of As to under-coordinated Fe atoms, thus significantly promoting the immobilization of arsenate. The findings of this study enhance our ability to precisely understand the migration and fate of As while also aiding in the design of highly efficient iron mineral materials for mitigating As pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c11344DOI Listing

Publication Analysis

Top Keywords

vacancy defects
16
arsenate adsorption
16
facets hematite
12
exposed facets
12
quantitative enhancement
8
enhancement arsenate
8
arsenate immobilization
8
defects exposed
8
110 facet
8
arsenate
7

Similar Publications

Defects are common features in hematite that arise from deviations from the perfect mineral crystal structure. Vacancy defects have been shown to significantly enhance arsenate (As) immobilization by hematite. However, the contributions from vacancy defects on different exposed facets of hematite have not been fully quantified.

View Article and Find Full Text PDF

The n-type and p-type conductivity mechanisms from intrinsic defects and Group IIA and Group VIB element doping in the photocatalyst BiTaO are systematically investigated by employing hybrid density functional calculations. The results reveal that vacancies , , , and antisite Ta are the predominant defects, depending on growth conditions. Bi-rich, appropriate Ta-rich, and O-poor conditions can promote BiTaO to form n-type conductivity due to the presence of the Ta donor defect and its easier ionization.

View Article and Find Full Text PDF

High purity quartz glass is an important material in high-tech industries like semiconductors and photovoltaics due to, among other properties, its good mechanical performance at high temperatures. Small amounts of Al in silica glass (in the range between 20 ppm and 100 ppm) have previously been shown to increase the viscosity of the SiO glass. The underlying mechanism for this increase is, however, not well understood.

View Article and Find Full Text PDF

Suppressing Cation Interdiffusion at CeO/ZrO Heterointerfaces via Dopant Segregation.

ACS Appl Mater Interfaces

January 2025

Hydrogen Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea.

Cation interdiffusion as a result of a chemical-potential gradient occurring at heterointerfaces is often regarded as an unfavorable side reaction and is typically suppressed through the use of a diffusion barrier layer. In this study, we propose a straightforward method for suppressing interdiffusion that involves the creation of nanometer-thick diffusion barrier layers by means of dopant segregation. Using the CeO/ZrO heterointerface in this study, we demonstrate that a Sc acceptor dopant tends to accumulate at the heterointerface during the sintering process, especially at the edge of the CeO grain boundary, thereby effectively suppressing Ce-Zr interdiffusion.

View Article and Find Full Text PDF

Enhanced high-energy proton radiation hardness of ZnO thin-film transistors with a passivation layer.

Nano Converg

January 2025

Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeolabuk-do, 56212, Republic of Korea.

Metal-oxide thin-film semiconductors have been highlighted as next-generation space semiconductors owing to their excellent radiation hardness based on their dimensional advantages of very low thickness and insensitivity to crystal structure. However, thin-film transistors (TFTs) do not exhibit intrinsic radiation hardness owing to the chemical reactions at the interface exposed to ambient air. In this study, significantly enhanced radiation hardness of AlO-passivated ZnO TFTs against high-energy protons with energies of up to 100 MeV is obtained owing to the passivation layer blocking interactions with external reactants, thereby maintaining the chemical stability of the thin-film semiconductor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!