Biomimetic neural substitutes, constructed through the bottom-up assembly of cell-matrix modulus via 3D bioprinting, hold great promise for neural regeneration. However, achieving precise control over the fate of neural stem cells (NSCs) to ensure biological functionality remains challenging. Cell behaviors are closely linked to cellular dynamics and cell-matrix mechanotransduction within a 3D microenvironment. To address this, a dynamic bioactive bioink is designed to provide adaptable biomechanics and instructive biochemical cues, specifically tailored for the fate commitment of NSCs, through incorporating reversible Schiff-base bonds and bioactive motifs, N-cadherin-mimicking and BDNF-mimicking peptides. We demonstrate that the dynamic properties of 3D bioprinted living fibers alleviate the mechanical confinement on NSCs and significantly enhance their mechanosensing, spreading, migration, and matrix remodeling within the 3D matrix. Additionally, the inclusion of N-cadherin-mimicking and BDNF-mimicking peptides further enhances cells' ability to sense and respond to mechanical and neurotrophic cues provided by the surrounding matrix, which accelerates the self-organization of a functional neural network within the 3D bioprinted construct, leading to significant motor and sensory function recovery in a rat complete spinal cord injury model. This work underscores the critical role of precisely designing cell-instructive bioinks for the advanced functionality of 3D bioprinted living constructs in neural regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780150PMC
http://dx.doi.org/10.1016/j.bioactmat.2024.12.028DOI Listing

Publication Analysis

Top Keywords

dynamic bioactive
8
neural network
8
spinal cord
8
cord injury
8
neural regeneration
8
n-cadherin-mimicking bdnf-mimicking
8
bdnf-mimicking peptides
8
bioprinted living
8
neural
6
bioprinted
4

Similar Publications

3D bioprinted dynamic bioactive living construct enhances mechanotransduction-assisted rapid neural network self-organization for spinal cord injury repair.

Bioact Mater

April 2025

State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

Biomimetic neural substitutes, constructed through the bottom-up assembly of cell-matrix modulus via 3D bioprinting, hold great promise for neural regeneration. However, achieving precise control over the fate of neural stem cells (NSCs) to ensure biological functionality remains challenging. Cell behaviors are closely linked to cellular dynamics and cell-matrix mechanotransduction within a 3D microenvironment.

View Article and Find Full Text PDF

Polyketide synthases (PKSs) are multidomain enzymatic assembly lines that biosynthesize a wide selection of bioactive natural products from simple building blocks. In contrast to their -acyltransferase (AT) counterparts, -AT PKSs rely on stand-alone ATs to load extender units onto acyl carrier protein (ACP) domains embedded in the core PKS machinery. -AT PKS gene clusters also encode stand-alone acyl hydrolases (AHs), which are predicted to share the overall fold of ATs but function like type II thioesterases (TEs), hydrolyzing aberrant acyl chains from ACP domains to promote biosynthetic efficiency.

View Article and Find Full Text PDF

Background: Monkeypox (Mpox) is a re-emerging zoonotic disease with limited therapeutic options, necessitating the exploration of novel antiviral agents. (turmeric) is a widely used medicinal plant known for its antioxidant and anti-inflammatory properties, primarily attributed to its bioactive curcuminoids.

Aim: This study aimed to evaluate the therapeutic potential of aqueous extract (CAE) against monkeypox through phytochemical characterization, biological assays, and computational analyses.

View Article and Find Full Text PDF

The polyketide specialized metabolites of bacteria are attractive targets for generating analogues, with the goal of improving their pharmaceutical properties. Here, we aimed to produce C-26 derivatives of the giant anti-cancer stambomycin macrolides using a mutasynthesis approach, as this position has been shown previously to directly impact bioactivity. For this, we leveraged the intrinsically broad specificity of the acyl transferase domain (AT) of the modular polyketide synthase (PKS), which is responsible for the alkyl branching functionality at this position.

View Article and Find Full Text PDF

This study evaluated the in vitro antioxidant activity and bioactive compound content of mixed-strain lactic acid bacteria-fermented black mulberry juice (FBMJ) and its protective effects against oxidative stress using physicochemical experiments and a cellular oxidative stress model. We also performed preliminary analyses of polysaccharide structures in FBMJ and identified the dynamic changes in the phenolic profiles of FBMJ during the fermentation process. The results indicated that FBMJ polyphenols can improve cell vitality and prevent HO-induced oxidative stress by reducing intracellular reactive oxygen species concentrations and regulating mitochondrial membrane potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!