Understanding the mechanism of drug action in biological systems is facilitated by the interactions between small molecules and target chiral biomolecules. In this context, focusing on the enantiomeric recognition of carbohydrates in solution through steady-state fluorescence emission spectroscopy is noteworthy. To this end, we have developed a third generation of chiral optical sensors for carbohydrates, distinct from all of those previously presented, which interact with carbohydrates to form non-covalent probe-analyte interactions. The proposed sensor is based on 2-oxazolines bearing a fluorophoric benzothiazole unit. We evaluated their photophysical properties in the presence of enantiomeric pairs of arabinose, mannose, xylose, and glucose in solution. Our primary findings indicate that the compounds outlined in this study were able to distinguish between enantiomeric pairs in solution, demonstrating good to excellent enantioselectivity through simple intermolecular interactions. To achieve the best enantioselectivity results, theoretical calculations were performed to better understand the observed interactions between the sensors and the analytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775706 | PMC |
http://dx.doi.org/10.1021/jacsau.4c01131 | DOI Listing |
JACS Au
January 2025
Instituto de Química, Universidade Federal do Rio Grande do Sul-UFRGS, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil.
Understanding the mechanism of drug action in biological systems is facilitated by the interactions between small molecules and target chiral biomolecules. In this context, focusing on the enantiomeric recognition of carbohydrates in solution through steady-state fluorescence emission spectroscopy is noteworthy. To this end, we have developed a third generation of chiral optical sensors for carbohydrates, distinct from all of those previously presented, which interact with carbohydrates to form non-covalent probe-analyte interactions.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA.
DNA has found increasing applications in molecular engineering, yet its chiral property has rarely been utilized. Here, we report a mirror-image experiment using naturally occurring D-DNA and its enantiomer L-DNA to sort a chiral mixture of single-wall carbon nanotubes (SWCNTs). We find that parity conservation leads to a robust experimental outcome: changing DNA chirality results in handedness inversion of the purified nanotube.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sichuan University - Wangjiang Campus: Sichuan University, Chemistry, 29 Wangjiang Rd, 610064, Chengdu, CHINA.
Poly(lactic-co-glycolic acid) (PLGA) has been widely employed for various biomedical applications owing to its biodegradability and biocompatibility. The discovery of the stereocomplex formation between enantiomeric alternating PLGA pairs underscored its potential as high-performance biodegradable materials with diverse material properties and biodegradability. Herein, we have established a regio- and stereoselective ring-opening polymerization approach for the synthesis of stereocomplexed isoenriched alternating PLGA from racemic methyl-glycolide (rac-MG).
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
(±)-Melichuniiones A and B (1 and 2), two novel enantiomeric pairs of lignan-phloroglucinol hybrids with an unprecedented beadlike core were isolated from the leaves of , together with new analogues 3-6. Compounds 1 and 2 possess a unique dispiro [furan-2,5'-cyclopenta[]furan-2',3''-furan] 5/5/5/5 tetracyclic skeleton. Their structures were established by extensive spectroscopic analyses, single crystal X-ray diffraction, and electronic circular dichroism (ECD) calculations.
View Article and Find Full Text PDFInorg Chem
January 2025
Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China.
Three two-dimensional (2D) chiral Ag(I) complexes with formulas [Ag(L)(5-nipa)] (), [Ag(L)(5-nipa)] (), and {[Ag(L)(5-hipa)]·2HO} () were prepared through the reactions of AgO with enantiopure -monodentate N-donors (L/L) and different dicarboxylic acids bearing A (acceptor)-π-- and D (donor)-π--type structural features, where / = (-)/(+)-2-(4'-pyridyl)-4,5-pinene-pyridine, 5-Hnipa = 5-nitroisophthalic acid, and 5-Hhipa = 5-hydroxyisophthalic acid. A study of their nonlinear optical responses reveals that chiral and enantiomeric pairs with the A-π--type dicarboxylic acid ligand simultaneously display second- and third-harmonic generation (SHG and THG) responses, while chiral containing the D-π--type dicarboxylic acid ligand only exhibits a very strong THG response. The THG intensity of is 451 × α-SiO, being about 27 and 24 times larger than those of and , respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!