Similar Publications

Group 13 aminoxy complexes of the form (L)E(TEMPO) (TEMPO = 2,2,6,6-tetramethylpiperidine 1-oxyl; L = THF (tetrahydrofuran) or Py (pyridine); E = Al, Ga, In) were prepared and structurally characterized. The complexes (THF)Ga(TEMPO) (1·THF) and (Py)In(TEMPO) (2·Py) are shown to heterolytically cleave H under mild conditions (3 atm, 20 °C, ≤ 1 h). 1·THF reacts reversibly with H to form a formal H-adduct that bears a Ga(iii) hydride site and a protonated TEMPO ligand with concomitant loss of THF, consistent with Ga(iii) and TEMPO functioning as Lewis acid and base, respectively.

View Article and Find Full Text PDF

Diverse and Selective Metal-Ligand Cooperative Routes for Activating Non-Functionalized Ketones.

Inorg Chem

January 2025

Departamento de Catálisis y Procesos Catalíticos, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.

The rhodium and iridium complexes [Cp*M(κ,,-)][SbF] (Cp* = η-CMe; M = Rh, ; Ir, ; = pyridinyl-amidine ligand) exhibit three different cooperative metal-ligand reactivity modes when interacting with nonfunctionalized ketones. With the methyl ketones CHCOR (R = CH, Ph, CF), activation of the ketone methyl C(sp)-H bond yields ketonyl compounds of formula [Cp*M(CHCOR)(κ,-)][SbF]. With the ketones (CF)CO and CFCOPh, the complexes add to the C═O double bond of the ketone.

View Article and Find Full Text PDF

Although metal-organic frameworks are coordination-driven assemblies, the structural prediction and design using metal-ligand interactions can be unreliable due to other competing interactions. Leveraging non-coordination interactions to develop porous assemblies could enable new materials and applications. Here, we use a multi-module MOF system to explore important and pervasive impact of ligand-ligand interactions on metal-ligand as well as ligand-ligand co-assembly process.

View Article and Find Full Text PDF

Functional pincer ligands that engage in metal-ligand cooperativity and/or are capable of redox non-innocence have found a great deal of success in catalysis. These two properties may be found in metal complexes of the 2,6-bis(pyrazol-3-yl)pyridine (bpp) ligands. With this goal in mind, we have attempted the coordination of 2,6-bis(5-trifluoromethylpyrazol-3-yl)pyridine (LCF3) and its Bu analogue 2,6-bis(5--butylpyrazol-3-yl)pyridine (LtBu) to Mo(0) by reactions with mixed phosphine/carbonyl complexes [Mo(CO)(MeCN)(PMePh)] 1-3 (1 ≤ ≤ 3).

View Article and Find Full Text PDF

CO Reduction at a Borane-Modified Iron Complex: A Secondary Coordination Sphere Strategy.

Angew Chem Int Ed Engl

January 2025

Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N8K 3G6, Canada.

This work addresses fundamental questions that deepen our understanding of secondary coordination sphere effects on carbon dioxide (CO) reduction using derivatized hydride analogues of the type, [Cp*Fe(diphosphine)H] (Cp* = CMe ) - a well-studied family of organometallic complex - as models. More precisely, we describe the general reactivity of [(Cp*-BR)Fe(diphosphine)H], which contains an intramolecularly positioned Lewis acid, and its cooperative reactivity with CO. Control experiments underscore the critical nature of borane incorporation for transforming CO to reduced products, a reaction that does not occur for unfunctionalized [Cp*Fe(diphosphine)H].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!