Artificial Intelligence (AI) is rapidly transforming healthcare, particularly in orthopedics, by enhancing diagnostic accuracy, surgical planning, and personalized treatment. This review explores current applications of AI in orthopedics, focusing on its contributions to diagnostics and surgical procedures. Key methodologies such as artificial neural networks (ANNs), convolutional neural networks (CNNs), support vector machines (SVMs), and ensemble learning have significantly improved diagnostic precision and patient care. For instance, CNN-based models excel in tasks like fracture detection and osteoarthritis grading, achieving high sensitivity and specificity. In surgical contexts, AI enhances procedures through robotic assistance and optimized preoperative planning, aiding in prosthetic sizing and minimizing complications. Additionally, predictive analytics during postoperative care enable tailored rehabilitation programs that improve recovery times. Despite these advancements, challenges such as data standardization and algorithm transparency hinder widespread adoption. Addressing these issues is crucial for maximizing AI's potential in orthopedic practice. This review emphasizes the synergistic relationship between AI and clinical expertise, highlighting opportunities to enhance diagnostics and streamline surgical procedures, ultimately driving patient-centric care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776378PMC
http://dx.doi.org/10.22038/ABJS.2024.84231.3829DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
surgical procedures
8
neural networks
8
intelligence state
4
state art
4
art orthopedic
4
orthopedic surgery
4
surgery artificial
4
intelligence rapidly
4
rapidly transforming
4

Similar Publications

Background Artificial Intelligence (AI) is revolutionizing medical science, with significant implications for radiology. Understanding the knowledge, attitudes, perspectives, and practices of medical professionals and residents related to AI's role in radiology is crucial for effective integration. Methods A cross-sectional survey was conducted among members of the Indian Radiology & Imaging Association (IRIA), targeting practicing radiologists and residents across academic and non-academic institutions.

View Article and Find Full Text PDF

AI-driven multi-omics integration for multi-scale predictive modeling of genotype-environment-phenotype relationships.

Comput Struct Biotechnol J

January 2025

Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, NY, USA.

Despite the wealth of single-cell multi-omics data, it remains challenging to predict the consequences of novel genetic and chemical perturbations in the human body. It requires knowledge of molecular interactions at all biological levels, encompassing disease models and humans. Current machine learning methods primarily establish statistical correlations between genotypes and phenotypes but struggle to identify physiologically significant causal factors, limiting their predictive power.

View Article and Find Full Text PDF

The role of conscious attention in auditory statistical learning: Evidence from patients with impaired consciousness.

iScience

January 2025

Cognitive Neuroimaging Unit U992, CNRS, INSERM, CEA, DRF/Institut Joliot, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France.

The need for attention to enable statistical learning is debated. Testing individuals with impaired consciousness offers valuable insight, but very few studies have been conducted due to the difficulties inherent in such studies. Here, we examined the ability of patients with varying levels of disorders of consciousness (DOC) to extract statistical regularities from an artificial language composed of randomly concatenated pseudowords by measuring frequency tagging in EEG.

View Article and Find Full Text PDF

A comparison of the persuasiveness of human and ChatGPT generated pro-vaccine messages for HPV.

Front Public Health

January 2025

CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.

Introduction: Public health messaging is crucial for promoting beneficial health outcomes, and the latest advancements in artificial intelligence offer new opportunities in this field. This study aimed to evaluate the effectiveness of ChatGPT-4 in generating pro-vaccine messages on different topics for Human Papillomavirus (HPV) vaccination.

Methods: In this study ( = 60), we examined the persuasive effect of pro-vaccine messages generated by GPT-4 and humans, which were constructed based on 17 factors impacting HPV vaccination.

View Article and Find Full Text PDF

Artificial-Intelligence Driven Precision Chemistry.

Precis Chem

January 2025

Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!