is a severe danger to worldwide maize () cultivation, due to its extreme toxicity of aflatoxins produced by the fungi, and its ability to cause economic losses while also posing a health concern to humans and animals. Among the measures that may be considered for control, applying coatings based on natural ingredients appears to be the most promising. The current work examines the antagonistic ability of bioactive metabolites added to chitosan nanoparticles against on maize kernels. The chitosan nanoparticles loaded with bioactive metabolites were characterized using the transmission electron microscope (TEM), zeta potential, size distribution, polydiversity index (PDI), pH, encapsulation efficiency and Fourier transform infrared spectroscopy (FTIR). The TEM revealed that the chitosan nanoparticles loaded with bioactive metabolites were spherical and smooth on the surface, and by increasing the concentration of bioactive metabolites added to the chitosan nanoparticles, the diameter of the chitosan nanoparticle grew. The zeta potential and size distribution values increased as the quantity of bioactive metabolites increased in the chitosan nanoparticles. The FTIR analysis indicated the presence of several functional groups, including alkynes, alkene, aliphatic primary amines, and other functional groups. The chitosan nanoparticles loaded with bioactive metabolites at a concentration of 7 mg/mL showed significant antifungal activity against , reducing their growth in maize kernels by 89.42 % after 10 days of storage. They also reduced the percentage of germination inhibition rate and viability percentage. It could be concluded that adding bioactive metabolites to chitosan nanoparticles might have significant implications for food safety by using it in the industry to reduce the fungal contamination of grains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780941PMC
http://dx.doi.org/10.1016/j.heliyon.2025.e41875DOI Listing

Publication Analysis

Top Keywords

chitosan nanoparticles
32
bioactive metabolites
32
nanoparticles loaded
16
loaded bioactive
16
metabolites chitosan
12
chitosan
9
bioactive
8
metabolites
8
antifungal activity
8
maize kernels
8

Similar Publications

Nanoscale Metal-Organic Frameworks for the Co-Delivery of Cycloxaprid and Pooled siRNAs to Enhance Control Efficacy in .

J Agric Food Chem

January 2025

China-Kenya Joint Laboratory for Ecological Pest Control of Citrus, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

RNA pesticides have emerged as a promising alternative to conventional chemical pesticides due to their high specificity and minimal environmental impact. However, the instability of RNA molecules in the environment and the challenges associated with their effective delivery to target pests limit their broader application. This study addresses these challenges by developing a dual delivery system using chitosan (CS) and Metal-Organic Frameworks (MOFs) to enhance the delivery and efficacy of double-stranded RNA (dsRNA) and cycloxaprid against , a vector of citrus greening disease.

View Article and Find Full Text PDF

Bone remodeling, a continuous process of resorption and formation, is essential for maintaining skeletal integrity and mineral balance. However, in cases of critical bone defects where the natural bone remodeling capacity is insufficient, medical intervention is necessary. Traditional bone grafts have limitations such as donor site morbidity and availability, driving the search for bioengineered scaffold alternatives.

View Article and Find Full Text PDF

is a severe danger to worldwide maize () cultivation, due to its extreme toxicity of aflatoxins produced by the fungi, and its ability to cause economic losses while also posing a health concern to humans and animals. Among the measures that may be considered for control, applying coatings based on natural ingredients appears to be the most promising. The current work examines the antagonistic ability of bioactive metabolites added to chitosan nanoparticles against on maize kernels.

View Article and Find Full Text PDF

The cancer-associated fibroblasts (CAFs) in tumor stroma present substantial barriers to drug penetration, resulting in tumor resistance and progression. One promising strategy is to reprogram CAFs into a quiescent state, which necessitates novel approaches. Our study introduces a sequential treatment strategy using chitosan thermosensitive hydrogels loaded with α-Mangostin (α-M), a small molecule drug with antifibrotic properties, aimed at reprogramming CAFs within the breast cancer tumor microenvironment (TME).

View Article and Find Full Text PDF

Carbohydrate polymer-based nanoparticles in curcumin delivery for cancer therapy: A review.

Int J Biol Macromol

January 2025

Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China. Electronic address:

The use of natural products for cancer treatment has a lengthy history. The safety and multifunctionality of naturally occurring substances have rendered them appropriate for cancer treatment. Curcumin influences multiple molecular pathways and is advantageous for treating both hematological and solid tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!