The complexation behavior and binding affinity of Triton X-100 (TX-100) and Triton X-114 (TX-114) with β-cyclodextrin (β-CD) were extensively studied in an aqueous medium using a comprehensive suite of experimental techniques. These techniques allowed for the evaluation of key physicochemical parameters, including critical micelle concentration (cmc), aggregation number (), Stern-Volmer constant, and particle size distribution. These metrics were instrumental in understanding the underlying mechanism of the host-guest interaction between β-CD and Triton-X. Dynamic light scattering (DLS) data provided strong evidence for the formation of inclusion complexes, demonstrating significant hydrophobic interactions between the hydrophobic regions of Triton-X and the cavity of β-CD. The disruption of micellar structures, caused by β-CD encapsulating the hydrophobic moieties of the surfactants, was clearly observed. This process also resulted in an increased CMC, further underscoring the impact of β-CD on the aggregation behavior of the surfactants. To quantify the interaction, the Benesi-Hildebrand method was utilized to determine the stoichiometry and binding constants of the β-CD/Triton-X complexes. The results confirmed a well-defined 1 : 1 binding mode, indicating the precise incorporation of the surfactant's hydrophobic tails into the β-CD cavity while leaving the hydrophilic regions exposed to the aqueous environment. This selective binding mechanism alters the thermodynamics of micellization and disrupts the native micellar equilibrium of the surfactant systems. This systematic and comparative investigation is among the few studies that thoroughly examine the interactions between Triton-X surfactants and β-CD. Such research not only enhances our understanding of these complexes, but also reveals their significant potential for various applications. In drug delivery, for example, β-CD/Triton-X complexes can improve the solubility, stability, and bioavailability of hydrophobic drugs. In supramolecular chemistry, these complexes serve as model systems for studying host-guest interactions and self-assembly processes. Furthermore, their ability to modulate surfactant behaviour opens avenues for their use in material science, cosmetics, and industrial formulations, where precise control over micelle formation and aggregation is essential. This study underscores the versatility and utility of β-CD in interacting with non-ionic surfactants, offering insights that can be applied to other amphiphilic systems and paving the way for innovative applications in diverse fields.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp03264kDOI Listing

Publication Analysis

Top Keywords

triton x-100
8
triton x-114
8
β-cd
8
β-cd/triton-x complexes
8
complexes
5
hydrophobic
5
physicochemical investigation
4
investigation complex
4
complex formation
4
formation β-cyclodextrin
4

Similar Publications

The complexation behavior and binding affinity of Triton X-100 (TX-100) and Triton X-114 (TX-114) with β-cyclodextrin (β-CD) were extensively studied in an aqueous medium using a comprehensive suite of experimental techniques. These techniques allowed for the evaluation of key physicochemical parameters, including critical micelle concentration (cmc), aggregation number (), Stern-Volmer constant, and particle size distribution. These metrics were instrumental in understanding the underlying mechanism of the host-guest interaction between β-CD and Triton-X.

View Article and Find Full Text PDF

Effects of nonionic surfactants on life history traits of Drosophila melanogaster.

Environ Sci Pollut Res Int

January 2025

University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 263 Avenue du Gal Leclerc, CS 74205, 35042, Rennes Cedex, France.

Surfactants are used for a variety of applications such as emulsifiers, solubilizers, or foaming agents. Their intensive production and use in pharmaceutical, cosmetic and agricultural products have resulted in their continuous discharge in the environment, especially via wastewaters. Surfactants have become a threat to living organisms as they interact with, and disrupt, cell membranes and macromolecules.

View Article and Find Full Text PDF

Performance and emissions of diesel engine combustion lubricated with Jatropha bio-lubricant and MWCNT additive.

Sci Rep

January 2025

Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.

Vegetable oil-based lubricants, modified through transesterification and epoxidation, present a sustainable alternative to mineral lubricants for transport and industrial use. This study evaluates epoxidized jatropha oil (EJA) enhanced with multi-walled carbon nanotubes (MWCNT) as a bio-lubricant for compression ignition engines. MWCNT, dispersed in EJA using an ultrasonic probe sonicator with Triton X-100 as a surfactant, was tested at nanoparticle concentrations from 0.

View Article and Find Full Text PDF

In bone tissue engineering, a suitable scaffold is the key. Due to their similar composition to bone tissue, special structure, good mechanical properties, and osteogenic properties, acellular fish scale scaffolds are potential scaffolds for bone tissue engineering. At present, the fish scale decellularization scheme mostly uses a combination of sodium dodecyl sulfate and ethylenediamine tetraacetic acid (EDTA), but this method has problems.

View Article and Find Full Text PDF

Enhancing Biodegradation of Insoluble High Molecular Weight Polycyclic Aromatic Hydrocarbons in Macroemulsion (ME) Bioreactors with a Liquid-Liquid Interface.

ACS Appl Mater Interfaces

January 2025

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.

Due to the low bioavailability and insolubility of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in aqueous solutions, their degradation efficiency is significantly limited in wastewater treatment and environmental remediation. To address this challenge, we designed oil-in-water (O/W) macroemulsion (ME) bioreactors with mixed surfactants (Tween-80 and Triton X-100), -butanol, corn oil, and () to enhance the degradation efficiency of pyrene. Owing to the higher solubility of pyrene in MEs, it could be easily adsorbed onto hydrophobic groups on the cell surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!