Duchenne muscular dystrophy is a severe neuromuscular disorder, caused by mutations in the DMD gene. Normally, the DMD gene gives rise to multiple dystrophin isoforms, of which multiple are expressed in the brain. The location of the mutation determines the number of dystrophin isoforms affected, and the absence thereof leads to behavioral and cognitive impairments. Even though behavioral studies have thoroughly investigated the effects of the loss of Dp427, and to a lesser extend of Dp140, in mice, direct comparisons between models lacking multiple dystrophin isoforms are sparse. Furthermore, a behavioral characterization of the DMD-null mouse, which lacks all dystrophin isoforms, has never been undertaken. Using a wide variety of behavioral tests, we directly compared impairments between mdx5cv, mdx52 and DMD-null mice. We confirmed the role of Dp427 in emotional reactivity. We did not find any added effects of loss of Dp140 on fear, but showed the involvement of Dp140 in spontaneous behavior, specifically in habituation and activity changes due to light/dark switches. Lastly, Dp71/Dp40 seems to play an important role in many behavioral domains, including anxiety and spontaneous behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dmm.052047 | DOI Listing |
Dis Model Mech
January 2025
Department of Human genetics, Leiden University Medical Center, Leiden, the Netherlands.
Duchenne muscular dystrophy is a severe neuromuscular disorder, caused by mutations in the DMD gene. Normally, the DMD gene gives rise to multiple dystrophin isoforms, of which multiple are expressed in the brain. The location of the mutation determines the number of dystrophin isoforms affected, and the absence thereof leads to behavioral and cognitive impairments.
View Article and Find Full Text PDFCell Death Dis
January 2025
Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy.
Sarcoglycanopathies are heterogeneous proximo-distal diseases presenting severe muscle alterations. Although there are 6 different sarcoglycan isoforms, sarcoglycanopathies are caused exclusively by mutations in genes coding for one of the four sarcoglycan transmembrane proteins (alpha, beta, gamma and delta) forming the sarcoglycan complex (SGC) in skeletal and cardiac muscle. Little is known about the different roles of the SGC beyond the dystrophin glycoprotein complex (DGC) structural role.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.
View Article and Find Full Text PDFDis Model Mech
December 2024
CNRS, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, 91400 Saclay, France.
The severity of brain comorbidities in Duchenne muscular dystrophy (DMD) depends on the mutation position within the DMD gene and differential loss of distinct brain dystrophin isoforms (i.e. Dp427, Dp140, Dp71).
View Article and Find Full Text PDFBrain
December 2024
Dubowitz Neuromuscular Centre, University College London, Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK.
Dystrophin is a protein crucial for maintaining the structural integrity of skeletal muscle. So far, the attention was focused on the role of dystrophin in muscle in view of the devastating progression of weakness and early death that characterises Duchenne muscular dystrophy. However, in the last few years, the role of shorter dystrophin isoforms, including development and adult expression-specific mechanisms, has been a greater focus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!