Spintronic devices based on the electrical manipulation of magnetic chiral domain walls (DWs) within magnetic nanowires promise advanced memory and logic with high speed and density. However, error-free positioning of the DWs along the magnetic nanowires is challenging. Here, we demonstrate reconfigurable domain wall logic and neuronal devices based on the interaction between the DWs and local magnetic inhibitors that are placed in the proximity of the magnetic nanowire. First, we investigate the effect of localized stray fields generated by a nanoscopic magnetic inhibitor on the motion of domain walls moved by current passing through the nanowires. We then show that the localized stray field is sufficient to inhibit or promote the current-induced propagation of chiral DWs depending on the state of the inhibitor. Further, we demonstrate that this allows for a DW-based logic XNOR gate and DW-based neuromorphic devices with leaky integrate-and-fire neuronal functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c12503 | DOI Listing |
ACS Nano
January 2025
Max Planck Institute of Microstructure Physics, Weinberg 2, Halle (Saale) 06120, Germany.
Spintronic devices based on the electrical manipulation of magnetic chiral domain walls (DWs) within magnetic nanowires promise advanced memory and logic with high speed and density. However, error-free positioning of the DWs along the magnetic nanowires is challenging. Here, we demonstrate reconfigurable domain wall logic and neuronal devices based on the interaction between the DWs and local magnetic inhibitors that are placed in the proximity of the magnetic nanowire.
View Article and Find Full Text PDFInt J Cardiol Heart Vasc
February 2025
Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany.
Background And Aims: Cardiotoxicity from immune checkpoint inhibitor (ICI) therapy is a challenge in clinical practice, and the assessment of ICI-related myocarditis (ICI-M) is often complicated by a variable phenotype. Cardiac magnetic resonance imaging (CMR) is used frequently, but evidence is poor. Here, we aim to assess the role of CMR in the assessment of suspected ICI-M in a real-world clinical setting.
View Article and Find Full Text PDFACS Appl Eng Mater
January 2025
Magnotherm Solutions GmbH, Pfungstädter Straße 102, 64297 Darmstadt, Germany.
Magnetic refrigeration leads the current commercialization efforts of ambient caloric cooling technologies, is considered among its peers most promising in terms of anticipated energy efficiency gain, and allows for complete elimination of harmful coolants. By now, functional magnetocaloric components (so-called regenerators) based on Mn-substituted and hydrogenated LaFeSi alloys are commercially available. However, this alloy system exhibits magnetostriction, is susceptible to fracture, oxidation, and does not passivate well, rendering it prone to failure and corrosion, particularly when using water as favorable heat exchange medium.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China.
Formamidopyrimidine DNA glycosylase (Fpg) and flap endonuclease 1 (FEN1) are essential to sustaining genomic stability and integrity, while the abnormal activities of Fpg and FEN1 may lead to various diseases and cancers. The development of simple methods for simultaneously monitoring Fpg and FEN1 is highly desirable. Herein, we construct a multiple cyclic ligation-promoted exponential recombinase polymerase amplification (RPA) platform for sensitive and simultaneous monitoring of Fpg and FEN1 in cells and clinical tissues.
View Article and Find Full Text PDFBMJ Open
January 2025
Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research Leicester Biomedical Research Centre, Glenfield Hospital, Leicester LE3 9QP, UK
Introduction: Heart failure with preserved ejection fraction (HFpEF) is characterised by severe exercise intolerance, particularly in those living with obesity. Low-energy meal-replacement plans (MRPs) have shown significant weight loss and potential cardiac remodelling benefits. This pragmatic randomised trial aims to evaluate the efficacy of MRP-directed weight loss on exercise intolerance, symptoms, quality of life and cardiovascular remodelling in a multiethnic cohort with obesity and HFpEF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!