Alzheimer's disease, a devastating neurodegenerative disorder, is characterized by progressive cognitive decline, primarily due to amyloid-beta protein deposition and tau protein phosphorylation. Effectively reducing the cytotoxicity of amyloid-beta42 aggregates and tau oligomers may help slow the progression of Alzheimer's disease. Conventional drugs, such as donepezil, can only alleviate symptoms and are not able to prevent the underlying pathological processes or cognitive decline. Currently, active and passive immunotherapies targeting amyloid-beta and tau have shown some efficacy in mice with asymptomatic Alzheimer's disease and other transgenic animal models, attracting considerable attention. However, the clinical application of these immunotherapies demonstrated only limited efficacy before the discovery of lecanemab and donanemab. This review first discusses the advancements in the pathogenesis of Alzheimer's disease and active and passive immunotherapies targeting amyloid-beta and tau proteins. Furthermore, it reviews the advantages and disadvantages of various immunotherapies and considers their future prospects. Although some antibodies have shown promise in patients with mild Alzheimer's disease, substantial clinical data are still lacking to validate their effectiveness in individuals with moderate Alzheimer's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/NRR.NRR-D-24-00846 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!