Background: The progression of bladder cancer (BC) from non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) significantly increases disease severity. Although the tumor microenvironment (TME) plays a pivotal role in this process, the heterogeneity of tumor cells and TME components remains underexplored.
Methods: We characterized the transcriptomes of single cells from 11 BC samples, including 4 NMIBC, 4 MIBC, and 3 adjacent normal tissues. Bulk RNA-seq data were used to validate the clinical features of characteristic cells, and protein levels of these cells were further confirmed through immunohistochemistry (IHC) and multiplex immunofluorescence.
Results: Bladder cancer progression was associated with distinct transcriptomic features in the TME. Tumor cells in MIBC displayed enhanced glycolytic activity and downregulation of chemokines and MHC-II molecules, reducing immune cell recruitment and facilitating immune evasion. This highlights glycolysis as a potential therapeutic target for disrupting tumor progression. We identified a T cell exhaustion pathway from naive CD8 + T cells (CD8 + TCF7) to terminally exhausted CD8 + STMN1 cells, with progressively declining immune surveillance. Targeting intermediate exhaustion states may restore T cell function and improve anti-tumor immunity. Macrophages polarized toward a pro-tumorigenic phenotype, while VEGFA + mast cells promoted angiogenesis in early-stage BC, suggesting their role as potential targets for therapeutic intervention in NMIBC. Furthermore, conventional dendritic cells (DCs) transformed into LAMP3 + DCs, contributing to an immunosuppressive microenvironment and enabling immune evasion.
Conclusion: This study reveals dynamic changes in the TME during BC progression, including enhanced glycolysis, T cell exhaustion, and immune cell remodeling, which contribute to immune evasion and tumor progression. These findings identify critical pathways and cell populations as potential therapeutic targets, offering new strategies to improve treatment outcomes in BC patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s12967-025-06138-6 | DOI Listing |
J Transl Med
January 2025
Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
Background: The progression of bladder cancer (BC) from non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) significantly increases disease severity. Although the tumor microenvironment (TME) plays a pivotal role in this process, the heterogeneity of tumor cells and TME components remains underexplored.
Methods: We characterized the transcriptomes of single cells from 11 BC samples, including 4 NMIBC, 4 MIBC, and 3 adjacent normal tissues.
Biomaterials
January 2025
Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China; Department of Urology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China. Electronic address:
Activating the cGAS-STING pathway presents a promising strategy to enhance the innate immunity and combat the immunosuppressive tumor microenvironment. One key mechanism for triggering this pathway involves the release of damaged DNA fragments caused by nuclear DNA damage. However, conventional cGAS-STING agonists often suffer from limited nucleus-targeting efficiency and potential biotoxicity.
View Article and Find Full Text PDFAm Soc Clin Oncol Educ Book
January 2025
Division of Oncology, Department of Medicine, University of Washington, Seattle, WA.
The growing sophistication of tumor molecular profiling has helped to slowly transition oncologic care toward a more personalized approach in different tumor types, including in bladder cancer. The National Comprehensive Cancer Network recommends that all patients with stage IVA and stage IVB urothelial carcinoma have molecular analysis that integrates at least testing to help facilitate the selection of future therapeutic options. Sequencing of tumor-derived tissue is the mainstay to obtain this genomic testing, but as in other cancers, there has been extensive research into the integration of liquid biopsies in longitudinal management.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Urology/State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
Sonodynamic therapy, a treatment modality recently widely used, is capable of disrupting the tumor microenvironment by inducing immunogenic cell death (ICD) and enhancing antitumor immunity during immunotherapy. Erdafitinib, an inhibitor of the fibroblast growth factor receptor, has demonstrated potential benefits for treating bladder cancer. However, Erdafitinib shows effectiveness in only a small number of patients, and the majority of patients responding positively to the medication have "immune-cold" tumors.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Radiation Physics, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
Accurate and efficient automatic segmentation is essential for various clinical tasks such as radiotherapy treatment planning. However, atlas-based segmentation still faces challenges due to the lack of representative atlas dataset and the computational limitations of deformation algorithms. In this work, we have proposed an atlas selection procedure (subset atlas grouping approach, MAS-SAGA) which utilized both image similarity and volume features for selecting the best-fitting atlases for contour propagation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!