Background: Vibrio parahaemolyticus is a marine bacterium causing seafood-associated gastrointestinal illness in humans and acute hepatopancreatic necrosis disease (AHPND) in shrimp. Bacteriophages have emerged as promising biocontrol agents against V. parahaemolyticus. This study characterizes Vibrio phage VPK8, focusing on host specificity, efficiency of plating (EOP) variability across V. parahaemolyticus isolates from diverse sources and other Vibrio species, morphology, genomic features, and bacteriolytic potential.
Methods: Vibrio phage VPK8 was isolated from blood cockles in Thailand using a mixed-host approach and purified via the double-layer agar method. Host specificity was evaluated using spot assays and EOP measurements against 120 Vibrio strains, including AHPND-associated, clinical, and seafood isolates. Phage morphology was characterized by transmission electron microscopy (TEM), while genomic features were analyzed using next-generation sequencing. Lytic characteristics, including latent period and burst size, were determined through one-step growth curves, and bacterial growth reduction was evaluated over a 24-h.
Results: Vibrio phage VPK8 is a lytic phage with a 42,866 bp linear double-stranded genome, G + C content of 49.4%, and 48 coding sequences. Phylogenetic analysis grouped it within the Autographiviridae family, showing 95.96% similarity to Vibrio phage vB_VpaP_MGD1. Viral proteomic analysis placed VPK8 within the Pseudomonadota host group. Spot assays indicated broad lytic activity, but EOP analysis revealed high infectivity in clinical and seafood V. parahaemolyticus isolates, as well as some V. cholerae and V. mimicus strains. TEM revealed an icosahedral head (~ 60 nm) and a short tail. At a multiplicity of infection of 0.01, VPK8 exhibited a latent period of 25 min, a burst size of 115, and effectively inhibited the reference host V. parahaemolyticus PSU5124 within 6 h, maintaining its lytic activity and stability for over 24 h.
Conclusions: This study provides a detailed characterization of Vibrio phage VPK8 which exhibits targeted infectivity with high EOP in clinical and seafood V. parahaemolyticus isolates, as well as selected Vibrio species. Its stable lytic performance, rapid replication, and genomic safety suggest its potential for phage-based applications. Further studies should explore its in vivo efficacy and the genetic features contributing to phage resistance mechanisms, enhancing its potential applicability in managing Vibrio-related diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s12985-025-02637-6 | DOI Listing |
Virol J
January 2025
Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
Background: Vibrio parahaemolyticus is a marine bacterium causing seafood-associated gastrointestinal illness in humans and acute hepatopancreatic necrosis disease (AHPND) in shrimp. Bacteriophages have emerged as promising biocontrol agents against V. parahaemolyticus.
View Article and Find Full Text PDFNat Microbiol
January 2025
Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
Bacterial genomes have regions known as defence islands that encode diverse systems to protect against phage infection. Although genetic elements that capture and store gene cassettes in Vibrio species, called integrons, are known to play an important role in bacterial adaptation, a role in phage defence had not been defined. Here we combine bioinformatic and molecular techniques to show that the chromosomal integron of Vibrio parahaemolyticus is a hotspot for anti-phage defence genes.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.
The growing threat of antimicrobial resistance (AMR), exacerbated by the COVID-19 pandemic, highlights the urgent need for alternative treatments such as bacteriophage (phage) therapy. Phage therapy offers a targeted approach to combat bacterial infections, particularly those resistant to conventional antibiotics. This study aimed to standardize an agar plate method for high-mix, low-volume phage production, suitable for personalized phage therapy.
View Article and Find Full Text PDFFront Microbiol
January 2025
Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States.
Metagenomic sequencing is increasingly being employed to understand the assemblage and dynamics of the oyster microbiome. Specimen collection and processing steps can impact the resultant microbiome composition and introduce bias. To investigate this systematically, a total of 54 farmed oysters were collected from Chesapeake Bay between May and September 2019.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan, ROC.
Vibrio parahaemolyticus is pathogenic to both humans and marine animals. Antimicrobial-resistant (AMR) bacteria have been reported to cause mortalities in shrimp, with phage therapy presenting an alternative and eco-friendly biocontrol strategy for controlling bacterial diseases. Therefore, this study aimed to isolate and characterize phages for their applicability in lysing Vibrio parahaemolyticus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!