Identification and validation of a prognostic signature of drug resistance and mitochondrial energy metabolism-related differentially expressed genes for breast cancer.

J Transl Med

Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.

Published: January 2025

Background: Drug resistance constitutes one of the principal causes of poor prognosis in breast cancer patients. Although cancer cells can maintain viability independently of mitochondrial energy metabolism, they remain reliant on mitochondrial functions for the synthesis of new DNA strands. This dependency underscores a potential link between mitochondrial energy metabolism and drug resistance. Hence, drug resistance and mitochondrial energy metabolism-related differentially expressed genes (DMRDEGs) may emerge as candidates for novel cancer biomarkers. This study endeavors to assess the viability of DMRDEGs as biomarkers or therapeutic targets for breast cancer.

Methods: We utilized the DRESIS database and MSigDB to identify genes related to drug resistance. Additionally, we sourced genes associated with mitochondrial energy metabolism from GeneCards and extant literature. By merging these genes with differentially expressed genes observed in normal and tumor tissues from the TCGA-BRCA and GEO databases, we successfully identified the DMRDEGs. Employing unsupervised consensus clustering, we divided breast cancer patients into two distinct groups based on the DMRDEGs. Consequently, we identified four hub genes to formulate a prognostic model, applying Cox regression, LASSO regression, and Random Forest methods. Furthermore, we examined immune infiltration and tumor mutation burden of the genes within our model and scrutinized divergences in the immune microenvironment between high- and low-risk groups. Small hairpin RNA and lentiviral plasmids were designed for stable transfection of breast cancer cell lines MDA-MB-231 and HCC1806. By conducting clone formation, scratch test, transwell assays, cell viability assay and measurement of oxygen consumption we initiated a preliminary investigation into mechanistic roles of AIFM1.

Results: We utilized DMRDEGs to develop a prognostic model that includes four mRNAs for breast cancer. This model combined with various clinical features and critical breast cancer facets, demonstrated remarkable efficacy in predicting patient outcomes. AIFM1 appeared to enhance the proliferation, migration, and invasiveness of breast cancer cell lines MDA-MB-231 and HCC1806. Moreover, by reducing oxygen consumption, it aids in the cancer cells' acquisition of drug resistance.

Conclusions: DMRDEGs hold promise as diagnostic markers and therapeutic targets for breast cancer. Among the associated mutated genes, ATP7B, FUS, AIFM1, and PPARG could serve as early diagnostic indicators, and notably, AIFM1 may present itself as a promising therapeutic target.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12967-025-06080-7DOI Listing

Publication Analysis

Top Keywords

breast cancer
32
drug resistance
20
mitochondrial energy
20
differentially expressed
12
expressed genes
12
energy metabolism
12
cancer
11
genes
9
breast
9
resistance mitochondrial
8

Similar Publications

Background: HER2-targeted therapies have revolutionized the treatment of HER2-positive breast cancer patients, leading to significant improvements in tumor response rates and survival. However, resistance and incomplete response remain considerable challenges. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is a novel therapeutic strategy for the management of dyslipidemia by enhancing the clearance of low-density lipoprotein cholesterol receptors, however recent evidence also shows links between PCSK9 and cancer cells.

View Article and Find Full Text PDF

Identification and validation of a prognostic signature of drug resistance and mitochondrial energy metabolism-related differentially expressed genes for breast cancer.

J Transl Med

January 2025

Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.

Background: Drug resistance constitutes one of the principal causes of poor prognosis in breast cancer patients. Although cancer cells can maintain viability independently of mitochondrial energy metabolism, they remain reliant on mitochondrial functions for the synthesis of new DNA strands. This dependency underscores a potential link between mitochondrial energy metabolism and drug resistance.

View Article and Find Full Text PDF

Low-exhaustion peripheral circulating γδ T cells serve as a biomarker for predicting the clinical benefit rate of non-small cell lung cancer (NSCLC) patients to chemotherapy or targeted therapy: a single-center retrospective study.

BMC Cancer

January 2025

Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.

Background: Multiple studies have demonstrated that the abundance and functionality of γδ T cells are favorable prognostic indicators for prolonged survival in cancer patients. However, the association between the immunophenotype of circulating γδ T cells and the therapeutic response in NSCLC patients undergoing chemotherapy or targeted therapy remains unclear.

Methods: Patients with EGFR wild-type (EGFR-WT) or mutant (EGFR-Mut) non-small cell lung cancer (NSCLC), diagnosed between January 2020 and January 2024, were included in this study.

View Article and Find Full Text PDF

Background: Chemotherapy is a well-established therapeutic approach for several malignancies, including breast cancer (BCa). However, the clinical efficacy of this drug is limited by cardiotoxicity. Assessing multiple cardiac biomarkers can help identify patients at risk of adverse outcomes from chemotherapy.

View Article and Find Full Text PDF

Background: Disparities in lung cancer outcomes persist among Black Americans, necessitating targeted interventions to address screening inequities. This paper reports the development and refinement of Witness Project Lung, a community-based initiative tailored to the specific needs of the Black community, aiming to improve awareness and engagement with lung cancer screening.

Methods: Utilizing a user-centered design and guided by the original Witness Project framework - an evidence-based lay health advisor intervention program originally developed to increase knowledge and awareness about breast cancer risk and screening in the Black community and later trans-created to the cervical and colorectal cancer screening contexts - Witness Project Lung was developed and refined through qualitative input from key stakeholders in the Black faith community.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!