Learning an association does not always succeed on the first attempt. Previous studies associated increased error signals in posterior medial frontal cortex with improved memory formation. However, the neurophysiological mechanisms that facilitate post-error learning remain poorly understood. To address this gap, participants performed a feedback-based association learning task and a 1-back localizer task. Increased hemodynamic responses in posterior medial frontal cortex were found for internal and external origins of memory error evidence, and during post-error encoding success as quantified by subsequent recall of face-associated memories. A localizer-based machine learning model displayed a network of cognitive control regions, including posterior medial frontal and dorsolateral prefrontal cortices, whose activity was related to face-processing evidence in the fusiform face area. Representation strength was higher during failed recall and increased during encoding when subsequent recall succeeded. These data enhance our understanding of the neurophysiological mechanisms of adaptive learning by linking the need for learning with increased processing of the relevant stimulus category.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s44271-025-00199-5DOI Listing

Publication Analysis

Top Keywords

posterior medial
12
medial frontal
12
frontal cortex
8
neurophysiological mechanisms
8
subsequent recall
8
learning
6
error-driven upregulation
4
upregulation memory
4
memory representations
4
representations learning
4

Similar Publications

Learning an association does not always succeed on the first attempt. Previous studies associated increased error signals in posterior medial frontal cortex with improved memory formation. However, the neurophysiological mechanisms that facilitate post-error learning remain poorly understood.

View Article and Find Full Text PDF

Vertebroplasty has shown excellent analgesic effects in patients with osteoporotic vertebral fractures. In Japan, percutaneous vertebroplasty, balloon kyphoplasty, and vertebral body stenting are commonly performed. All of these techniques require precise transpedicular vertebral puncture and complete cement filling without leakage.

View Article and Find Full Text PDF

We investigated the effect of anticipation on the proactive and reactive neuromechanical responses of the distal leg muscles in 20 young adults to anticipated and unanticipated rapid anterior or posterior treadmill-induced balance perturbations applied during walking. We quantified local medial gastrocnemius (MG) and tibialis anterior (TA) neuromechanics using cine B-mode ultrasound and surface electromyography before, during, and after the perturbation. Our findings partially supported the hypothesis that anticipated perturbations would elicit greater proactive agonist muscle adjustments than unanticipated perturbations.

View Article and Find Full Text PDF

Balance is crucial for various athletic tasks, and accurately assessing balance ability among elite athletes using simple and accessible measurement methods is a significant challenge in sports science. A common approach to balance assessment involves recording center of pressure (CoP) displacements using force platforms, with various indicators proposed to distinguish subtle balance differences. However, these indicators have not reached a consensus, and it remains unclear whether these analyses alone can fully explain the complex interactions of postural control.

View Article and Find Full Text PDF

Differential Neuronal Activation of Nociceptive Pathways in Neuropathic Pain After Spinal Cord Injury.

Cell Mol Neurobiol

January 2025

Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.

Neuropathic pain, a prevalent complication following spinal cord injury (SCI), severely impairs the life quality of patients. No ideal treatment exists due to incomplete knowledge on underlying neural processes. To explore the SCI-induced effect on nociceptive circuits, the protein expression of c-Fos was analyzed as an indicator of neuronal activation in a rat contusion model exhibiting below-level pain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!