Numerous studies have proven the potential of deep learning models for classifying wildlife. Such models can reduce the workload of experts by automating species classification to monitor wild populations and global trade. Although deep learning models typically perform better with more input data, the available wildlife data are ordinarily limited, specifically for rare or endangered species. Recently, citizen science programs have helped accumulate valuable wildlife data, but such data is still not enough to achieve the best performance of deep learning models compared to benchmark datasets. Recent studies have applied the hierarchical classification of a given wildlife dataset to improve model performance and classification accuracy. This study applied hierarchical classification by transfer learning for classifying Amazon parrot species. Specifically, a hierarchy was built based on diagnostic morphological features. Upon evaluating model performance, the hierarchical model outperformed the non-hierarchical model in detecting and classifying Amazon parrots. Notably, the hierarchical model achieved the mean Average Precision (mAP) of 0.944, surpassing the mAP of 0.908 achieved by the non-hierarchical model. Moreover, the hierarchical model improved classification accuracy between morphologically similar species. The outcomes of this study may facilitate the monitoring of wild populations and the global trade of Amazon parrots for conservation purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-025-88103-3 | DOI Listing |
BioData Min
January 2025
Department of Statistics, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia.
Background: This study employs a LSTM-FC neural networks to address the critical public health issue of child undernutrition in Ethiopia. By employing this method, the study aims classify children's nutritional status and predict transitions between different undernutrition states over time. This analysis is based on longitudinal data extracted from the Young Lives cohort study, which tracked 1,997 Ethiopian children across five survey rounds conducted from 2002 to 2016.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Department of Information Technology, Vardhaman College of Engineering, Shamshabad, Hyderabad, India.
Background: Biomedical text mining is a technique that extracts essential information from scientific articles using named entity recognition (NER). Traditional NER methods rely on dictionaries, rules, or curated corpora, which may not always be accessible. To overcome these challenges, deep learning (DL) methods have emerged.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, Belgrade, Serbia.
The expansion of LEAN and small batch manufacturing demands flexible automated workstations capable of switching between sorting various wastes over time. To address this challenge, our study is focused on assessing the ability of the Segment Anything Model (SAM) family of deep learning architectures to separate highly variable objects during robotic waste sorting. The proposed two-step procedure for generic versatile visual waste sorting is based on the SAM architectures (original SAM, FastSAM, MobileSAMv2, and EfficientSAM) for waste object extraction from raw images, and the use of classification architecture (MobileNetV2, VGG19, Dense-Net, Squeeze-Net, ResNet, and Inception-v3) for accurate waste sorting.
View Article and Find Full Text PDFSci Rep
January 2025
Biotechnology Major, Sangmyung University, Seoul, 03016, South Korea.
Numerous studies have proven the potential of deep learning models for classifying wildlife. Such models can reduce the workload of experts by automating species classification to monitor wild populations and global trade. Although deep learning models typically perform better with more input data, the available wildlife data are ordinarily limited, specifically for rare or endangered species.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
The diverse types and sizes, proximity to non-nodule structures, identical shape characteristics, and varying sizes of nodules make them challenging for segmentation methods. Although many efforts have been made in automatic lung nodule segmentation, most of them have not sufficiently addressed the challenges related to the type and size of nodules, such as juxta-pleural and juxta-vascular nodules. The current research introduces a Squeeze-Excitation Dilated Attention-based Residual U-Net (SEDARU-Net) with a robust intensity normalization technique to address the challenges related to different types and sizes of lung nodules and to achieve an improved lung nodule segmentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!