Improved constructs for bait RNA display in a bacterial three-hybrid assay.

Sci Rep

Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA.

Published: January 2025

We have previously developed a transcription-based bacterial three-hybrid (B3H) assay as a genetic approach to probe RNA-protein interactions inside of E. coli cells. This system offers a straightforward path to identify and assess the consequences of mutations in RBPs with molecular phenotypes of interest. One limiting factor in detecting RNA-protein interactions in the B3H assay is RNA misfolding arising from incorrect base-pair interactions with neighboring RNA sequences in a hybrid RNA. To support correct folding of hybrid bait RNAs, we have explored the use of a highly stable stem ("GC clamp") to isolate regions of a hybrid RNA as discrete folding units. In this work, we introduce new bait RNA constructs to (1) insulate the folding of individual components of the hybrid RNA with GC clamps and (2) express bait RNAs that do not encode their own intrinsic terminator. We find that short GC clamps (5 or 7 bp long) are more effective than a longer 13 bp GC clamp in the B3H assay. These new constructs increase the number of Hfq-sRNA and -5'UTR interactions that are detectable in the B3H system and improve the signal-to-noise ratio of many of these interactions. We therefore recommend the use of constructs containing short GC clamps for the expression of future B3H bait RNAs. With these new constructs, a broader range of RNA-protein interactions are detectable in the B3H assay, expanding the utility and impact of this genetic tool as a platform to search for and interrogate mechanisms of additional RNA-protein interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-85082-9DOI Listing

Publication Analysis

Top Keywords

b3h assay
16
rna-protein interactions
16
hybrid rna
12
bait rnas
12
bait rna
8
bacterial three-hybrid
8
short clamps
8
interactions detectable
8
detectable b3h
8
rna
7

Similar Publications

We have previously developed a transcription-based bacterial three-hybrid (B3H) assay as a genetic approach to probe RNA-protein interactions inside of E. coli cells. This system offers a straightforward path to identify and assess the consequences of mutations in RBPs with molecular phenotypes of interest.

View Article and Find Full Text PDF

The Passage of Chaperonins to Extracellular Locations in Requires a Functional Dot/Icm System.

Biomolecules

January 2025

Department of Microbiology-Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.

HtpB, the chaperonin of the bacterial pathogen , is found in extracellular locations, even the cytoplasm of host cells. Although chaperonins have an essential cytoplasmic function in protein folding, HtpB exits the cytoplasm to perform extracellular virulence-related functions that support 's lifestyle. The mechanism by which HtpB reaches extracellular locations is not currently understood.

View Article and Find Full Text PDF

Introduction: Feedback literacy (FBL) is a critical skill for learners encompassing four behaviors: appreciating feedback, making judgements, managing affect, and taking action. Little guidance has been available for clinical preceptors to promote FBL. The R2C2 feedback and coaching model that guides teachers through building Relationships, exploring Reactions and Reflections, discussing Content and Coaching to co-develop an action plan for follow-up may support FBL.

View Article and Find Full Text PDF

Background: The cannulation of the internal jugular vein (IJV) is a frequent procedure in critically ill patients. According to the guidelines, real-time ultrasound navigation is recommended. Traditional techniques pose several disadvantages, such as suboptimal needle visualization.

View Article and Find Full Text PDF

Developing a decision support tool to predict delayed discharge from hospitals using machine learning.

BMC Health Serv Res

January 2025

Department of Industrial Engineering, Dalhousie University, PO Box 15000, Halifax, B3H 4R2, NS, Canada.

Background: The growing demand for healthcare services challenges patient flow management in health systems. Alternative Level of Care (ALC) patients who no longer need acute care yet face discharge barriers contribute to prolonged stays and hospital overcrowding. Predicting these patients at admission allows for better resource planning, reducing bottlenecks, and improving flow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!