Valley charge-transfer insulator in twisted double bilayer WSe.

Nat Commun

National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, China.

Published: January 2025

In flat-band systems, emergent physics can be substantially modified by the presence of another nearby electronic band. For example, a Mott˘Hubbard insulator can turn into a charge transfer insulator if other electronic states enter between the upper and lower Hubbard bands. Here, we introduce twisted double bilayer (TDB) WSe, with twist angles near 60°, as a controllable platform in which the K-valley band can be tuned to close vicinity of the Γ-valley moiré flat band. At half-filling, correlations split the Γ-valley flat band into upper and lower Hubbard bands and a charge-transfer insulator forms between the Γ-valley upper Hubbard band and K-valley band. Using gate control, we continuously move the K-valley band across the Γ-valley Hubbard bands, and observe a tunable charge-transfer insulator gap and subsequently a continuous phase transition to a metal. The tuning of Mott˘Hubbard to charge-transfer insulator establishes valley degree of freedom as a suitable knob for transitions between exotic correlated phases.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-025-56490-wDOI Listing

Publication Analysis

Top Keywords

charge-transfer insulator
16
hubbard bands
12
k-valley band
12
twisted double
8
double bilayer
8
upper lower
8
lower hubbard
8
flat band
8
band
7
insulator
6

Similar Publications

Valley charge-transfer insulator in twisted double bilayer WSe.

Nat Commun

January 2025

National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, China.

In flat-band systems, emergent physics can be substantially modified by the presence of another nearby electronic band. For example, a Mott˘Hubbard insulator can turn into a charge transfer insulator if other electronic states enter between the upper and lower Hubbard bands. Here, we introduce twisted double bilayer (TDB) WSe, with twist angles near 60°, as a controllable platform in which the K-valley band can be tuned to close vicinity of the Γ-valley moiré flat band.

View Article and Find Full Text PDF

Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance.

View Article and Find Full Text PDF

We synthesized and spectroscopically investigated monolayer (ML) C on the topological insulator (TI) BiTe. This C/BiTe heterostructure is characterized by an excellent translational order in a novel (4 × 4) C superstructure on a (9 × 9) cell of BiTe. Angle-resolved photoemission spectroscopy (ARPES) of C/BiTe reveals that ML C accepts electrons from the TI at room temperature, but no charge transfer occurs at low temperatures.

View Article and Find Full Text PDF

Self-adaptive dielectrics (SADs), with the characteristics of rapid charge dissipation in electric field distortion, is regarded as the future material for package insulation of advanced electronic devices. The current landscape of SADs is incapable to achieve tunable nonlinear electrical conductivity and threshold field strength due to the inherent Schottky barrier, significantly limiting the application scenarios of SADs. Here, a strategy is reported to construct a stepped Schottky barrier through virus-like structures, which are composed of subminiature metal particles and semiconductor microspheres.

View Article and Find Full Text PDF

Organic-inorganic formamidinium lead triiodide (FAPbI) hybrid perovskite quantum dots (QDs) have garnered considerable attention in the photovoltaic field due to their narrow bandgap, exceptional environmental stability, and prolonged carrier lifetime. Unfortunately, their insulating ligands and surface vacancy defects pose significant obstacles to efficient charge transfer across device interfaces. In this work, an electrostatic harmonization strategy at the interface using a donor-acceptor dipole molecular attachment to achieve enhanced charge separation capabilities on the QD surface is ventured.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!