This study evaluates the unsteady laminar flow and heat and mass transfer of a nanofluid in the appearance of gyrotactic microorganisms. In this analysis, using the Darcy-Forchheimer flow inside the vicinity of a nonlinearly stretched surface with Brownian motion and thermophoresis impacts. Similarity conversion is familiar with reduced governing models into dimensionless variables, and "bvp4c," a MATLAB solver, is employed to find the computational outputs of this analysis. This analysis reports that the use of nanofluids provides better thermal characteristics which are helpful to enhance the heat transfer coefficient. Graphs for this analysis are created for distinct values of non-dimensionless parameters, whereas the coefficient of surface drag, heat flux, mass flux, and rate of microorganism density are all interpreted numerically and graphically. The high level of resistance provided by velocity slip and Forchheimer parameters leads to a decrease in velocity curves while an increment is seen in the temperature profile. It is also remarked that bioconvection Peclet number induces a decrement in the density distribution of motile microorganisms. In addition, it has been observed that the Nusselt number for a nonlinear stretching sheet is better as compared to a linear stretching sheet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10867-025-09669-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!