Phthalates are synthetic compounds, well-known plasticizers, with numerous applications and reported to have adverse effects on all living organisms residing in terrestrial and aquatic environments. In this study, the rice (Oryza sativa) seedlings were exposed to di-butyl phthalate (DBP) exogenously for 7 days, with varying concentrations of 0, 200, 400, 800, and 1600 mg/L, to explore the toxicological, physiological, and biochemical consequences by measuring various parameters such as pigment, lipid, and HO (hydrogen peroxide) contents. The biochemical analysis of seedlings showed that the pigments, lipids, and HO concentrations were altered abnormally. After 7 days of exposure, the maximum amount of DBP was accumulated and translocated in both the shoot and root of the grown seedlings, and all morphological parameters (i.e., length and weight of both shoot and root) and pigment content (such as total carotenoid, chlorophyll a and b) were declined significantly. Superoxide dismutase (SOD), HO, and thiobarbituric acid reactive substance (TBARS) levels in seedlings increase as the stress increases due to the higher exposure dose of DBP. Cell viability was observed under a confocal microscope confirming the damage of the plasma membrane. Additionally, molecular docking studies indicated that DBP has a good binding affinity with key antioxidant enzymes of Oryza sativa, interacting via hydrogen bonds with specific amino acids. This suggests a potential mechanistic pathway for the observed biochemical changes in Oryza sativa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-025-35951-1 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
Phthalates are synthetic compounds, well-known plasticizers, with numerous applications and reported to have adverse effects on all living organisms residing in terrestrial and aquatic environments. In this study, the rice (Oryza sativa) seedlings were exposed to di-butyl phthalate (DBP) exogenously for 7 days, with varying concentrations of 0, 200, 400, 800, and 1600 mg/L, to explore the toxicological, physiological, and biochemical consequences by measuring various parameters such as pigment, lipid, and HO (hydrogen peroxide) contents. The biochemical analysis of seedlings showed that the pigments, lipids, and HO concentrations were altered abnormally.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
College of Agronomy, Hunan Agricultural University, Changsha, 420128, China.
The tiller angle, one of the critical factors that determine the rice plant type, is closely related to rice yield. An appropriate rice tiller angle can improve rice photosynthetic efficiency and increase yields. In this study, we identified a transcription factor, TILLRE ANGLE CONTROL 8 (TAC8), that is highly expressed in the rice tiller base and positively regulates the tiller angle by regulating cell length and endogenous auxin content; TAC8 encodes a TEOSINTE BRANCHED1/CYCLOIDEA/PCF transcriptional activator that is highly expressed in the nucleus.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Environmental Sciences, Government College University Allama Iqbal Road, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan. Electronic address:
Soil contamination with toxic heavy metals [such as cadmium (Cd)] is becoming a serious global problem due to the rapid development of the social economy. Organic chelating agents such as succinic acid (SA) and oxalic acid (OA) are more efficient, environmentally friendly, and biodegradable compared to inorganic chelating agents and they enhance the solubility, absorption, and stability of metals. To investigate this, we conducted a pot experiment to assess the impact of SA (0.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
September 2024
College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
The use of nitrogen-fixing bacteria in agriculture is increasingly recognized as a sustainable method to boost crop yields, reduce chemical fertilizer use, and improve soil health. However, the microbial mechanisms by which inoculation with nitrogen-fixing bacteria enhance rice production remain unclear. In this study, rice seedlings were inoculated with the nitrogen-fixing bacterium R3 (Herbaspirillum) at the rhizosphere during the seedling stage in a pot experiment using paddy soil.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA.
Plasma is considered as the fourth state of matter, and atmospheric cold plasma (cold plasma) is a type of plasma consisting of ionized gases containing excited species of atoms, molecules, ions, and free radicals at near room temperature. Cold plasma is generated by applying high voltage to gases, causing it to ionize thus forming plasma. Although cold plasma has been found to break seed dormancy and improve germination rate, only a few studies have explored the potential of cold plasma against insect herbivory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!