Twenty-nine GRAS genes were identified in passion fruit, the N-terminal regions and 3D (three-dimensional) structures were closely related with their tissue-specific expression patterns. Candidate PeGRASs for enhancing stress resistance were identified. Passion fruit (Passiflora edulis Sims) is a tropical fruit crop with significant edible and ornamental value, but its growth and development are highly sensitive to environmental conditions. The plant-specific GRAS gene family plays critical roles in regulating growth, development, and stress responses. Here, we performed the first comprehensive analysis of the GRAS gene family in passion fruit. A total of 29 GRAS genes were identified and named PeGRAS1 to PeGRAS29 based on their chromosomal locations. Phylogenetic analysis using GRAS proteins from passion fruit, Arabidopsis, and rice revealed that PeGRAS proteins could be classified into 10 subfamilies. Compared to Arabidopsis, passion fruit lacked members from the LAS subfamily but gained one GRAS member (PeGRAS9) clustered with the rice-specific Os4 subfamily. Structural analysis performed in silico revealed that most PeGRAS members were intron less and exhibited conserved motif patterns near the C-terminus, while the N-terminal regions varied in sequence length and composition. Members within certain subfamilies including DLT, PAT1, and LISCL with similar unstructured N-terminal regions and 3D structures, exhibited similar tissue-specific expression patterns. While PeGRAS members with difference in these structural features, even within the same subfamily (e.g., DELLA), displayed distinct expression patterns. These findings highlighted that the N-terminal regions of GRAS proteins may be critical for their specific functions. Moreover, many PeGRAS members, particularly those from the PAT1 subfamily, were widely involved in stress responses, with PeGRAS19 and PeGRAS26 likely playing roles in cold tolerance, and PeGRAS25 and PeGRAS28 in drought resistance. This study provides a foundation for further functional research on PeGRASs and offers potential candidates for molecular breeding aimed at enhancing stress tolerance in passion fruit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00299-025-03432-x | DOI Listing |
Plant Cell Rep
January 2025
Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
Twenty-nine GRAS genes were identified in passion fruit, the N-terminal regions and 3D (three-dimensional) structures were closely related with their tissue-specific expression patterns. Candidate PeGRASs for enhancing stress resistance were identified. Passion fruit (Passiflora edulis Sims) is a tropical fruit crop with significant edible and ornamental value, but its growth and development are highly sensitive to environmental conditions.
View Article and Find Full Text PDFPlant Dis
January 2025
Guizhou University, Jiaxiu South Street, Huaxi District, Guiyang, China, 550025;
Passion fruit (Passiflora edulis) is a commercially important crop known for its nutritional value, high antioxidant content, and use in beverages and desserts. Gulupa baciliform virus A (GBVA), tentatively named Badnavirus in the family Caulimoviridae, is a cryptic circular double-stranded DNA (dsDNA, ≈6,951 bps) virus recently reported in Colombia with asymptomatic infection of passion fruit (Sepúlveda et al. 2022).
View Article and Find Full Text PDFNeotrop Entomol
January 2025
Depto de Ecologia, Instituto de Ciências Biológicas, Univ de Brasília (UnB), Brasília, DF, Brazil.
Land-use changes have led to natural habitat loss and fragmentation, favoring the occurrence of dominant bee species in agroecosystems. This has raised concerns on the dominance effects in pollination-dependent crops like passion fruits (Passiflora edulis Sims) in tropical regions. That is because dominant bee species might overlap their foraging time with regular pollinators, potentially impairing crop yield.
View Article and Find Full Text PDFArch Virol
January 2025
Universidade Estadual de Santa Cruz, UESC, Ilhéus, BA, CEP 45662-900, Brazil.
Passion fruit woodiness disease (PWD), caused by cowpea aphid-borne mosaic virus (CABMV), severely damages leaves and fruits, compromising passion fruit production. The dynamics of this infection in Passiflora spp. are still poorly understood.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China. Electronic address:
Purple passion fruit peel (PPFP) is a common biomass waste. Meanwhile, hydrothermal carbonization (HTC) is a common technology used for thermal conversion of biomass waste. Herein, the aqueous phase (AP) of PPFP was determined using HTC, and its properties were studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!