Natural products, particularly plants, remain a vital source of bioactive compounds owing to their unparalleled metabolic diversity across pharmaceuticals, cosmetics, foods, and agriculture. However, this diversity, encompassing not only a multitude of compounds but also their varying chemical and physical properties, presents a challenge in their effective utilization. Targeted analysis of specific metabolites, as well as untargeted approaches covering a wide metabolite range, necessitate optimal extraction solvents tailored to meet diverse requirements. Achieving optimization requires two crucial components: analytical methods capable of capturing a broad spectrum of metabolites and effective data analysis to derive meaningful conclusions. In this regard, 1H nuclear magnetic resonance (NMR) spectroscopy combined with principal component analysis (PCA) emerges as a promising approach for optimization. In this protocol, employing two model plants, leaves of basil (Ocimum basilicum) and lettuce (Lactura sativa), we deduce optimal extraction solvents from mixtures of methanol-water, acetonitrile, and chloroform, leveraging H NMR and PCA analyses.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-4350-1_2DOI Listing

Publication Analysis

Top Keywords

extraction solvents
12
principal component
8
component analysis
8
optimal extraction
8
analysis
5
optimizing extraction
4
solvents plant
4
plant chemical
4
chemical analysis
4
analysis nmr
4

Similar Publications

The nematode Caenorhabditis elegans, widely recognized as a model organism due to its ease of breeding and well-characterized genomes, boasts complete digestive, reproductive, and endocrine systems, as well as conserved signaling pathways shared with mammals. It has become an invaluable resource for metabolomics research, particularly in examining responses to chemical or environmental factors and toxicity assessments. In this article, we provide detailed, step-by-step protocols for cultivating C.

View Article and Find Full Text PDF

Analysis of Salicylic and Phenolic Acids in the Plant by HPLC-Fluorescence Detector.

Methods Mol Biol

January 2025

Natural Products Laboratory, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.

Salicylic acid is a member of benzoic acid derivatives, a group of compounds which have a backbone of C6C1 consisting of one carboxyl group and one (or more) hydroxyl group(s) attached to the aromatic ring. Salicylic acid is a signaling compound in systemic acquired resistance (SAR). An increased level of salicylic acid is found in the plant after a fungi's attack, which further induces the accumulation of phytoalexins, low molecular weight defense compounds.

View Article and Find Full Text PDF

Isolation of Natural Products from Marine Invertebrates.

Methods Mol Biol

January 2025

Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea.

Marine invertebrates such as sponges, cnidarians, bryozoans, and tunicates are considered to be prolific sources of novel biologically active natural products. Specimens from these organisms are composed of soft tissues with a high water and inorganic salt content compared to those from terrestrial counterparts. In addition, some of the secondary metabolites from these organisms tend to be more polar than those of terrestrial.

View Article and Find Full Text PDF

The extraction of plant essential oils (EOs) and analysis by gas chromatography coupled to mass spectrometry (GC-MS) are standard methods when studying aromatic plants and the chemical composition of EOs. Here, two simple methods for the extraction of EO compounds from leaves of Thymus vulgaris are described. Organic solvent extraction and solid-phase microextraction (SPME), respectively, are used and the results of the GC-MS analyses are compared.

View Article and Find Full Text PDF

Deep eutectic solvents (DES) and ionic liquids (ILs), specifically natural deep eutectic solvents (NADES), allow for the extraction of natural products using environmentally friendly solvents instead of organic solvents. Here we describe the extraction of anthocyanins from a medicinal plant using NADES prepared either by evaporating method or heating-and-stirring method with the help of ultrasound-assisted extraction (UAE). The NADES extract can be qualified by the high-performance liquid chromatography (HPLC) method, which can separate the component of NADES with target compounds from medicinal plant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!