Transition-metal-catalyzed enantioselective C-H activation has transformed the landscape of asymmetric synthesis, enabling the efficient conversion of C-H bonds into C-C and carbon-heteroatom (C-X) bonds. However, the formation of C-S bonds through enantioselective C-H thiolation remains underdeveloped due to challenges such as catalyst deactivation and competitive coordination of sulfur-containing compounds with chiral ligands. Herein, we report an unprecedented approach to constructing sulfur-substituted planar chiral ferrocenes (PCFs) through copper-mediated enantioselective C-H thiolation enabled by only a 2.5 mol % 1,1'-bi-2,2'-naphthol (BINOL) ligand. A variety of sulfur-substituted PCFs were obtained in good yields (up to 83%) with excellent enantioselectivity (up to >99% ee). Mechanistic studies reveal that the irreversible C-H activation serves as both the stereo- and rate-determining step and can be achieved with catalytic amounts of Cu species. Furthermore, the utility of this protocol is illustrated through gram-scale synthesis, removal of the directing group, and the synthesis of ,-chiral ligands as well as chiral rotaxanes. This significant advancement not only expands the tool kit for constructing chiral organosulfur compounds but also highlights the potential of enantioselective C-H activation in asymmetric synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c18255 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
Transition-metal-catalyzed enantioselective C-H activation has transformed the landscape of asymmetric synthesis, enabling the efficient conversion of C-H bonds into C-C and carbon-heteroatom (C-X) bonds. However, the formation of C-S bonds through enantioselective C-H thiolation remains underdeveloped due to challenges such as catalyst deactivation and competitive coordination of sulfur-containing compounds with chiral ligands. Herein, we report an unprecedented approach to constructing sulfur-substituted planar chiral ferrocenes (PCFs) through copper-mediated enantioselective C-H thiolation enabled by only a 2.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Organic Chemistry, Faculty of Chemistry Urmia University Urmia Iran.
Benzo-fused γ-lactams are fundamental in medicinal chemistry, acting as essential elements for various therapeutic agents due to their structural adaptability and capability to enhance biological activity. In their synthesis, transition metals play a pivotal role as catalysts, offering more efficient alternatives to traditional methods by facilitating C-N bond formation through mechanisms like intramolecular coupling. Recent advances have especially spotlighted transition-metal-catalyzed C-H amination reactions for directly converting C(sp)-H to C(sp)-N bonds, streamlining the creation of these compounds.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
Recently, nickel catalysts have garnered considerable attention for their efficacy and versatility in asymmetric catalysis, attributed to their distinctive properties. However, the use of cost-effective and sustainable divalent nickel catalysts in C-H activation/asymmetric alkene insertion poses significant challenges due to the intricate control of stereochemistry in the transformation of the tetracoordinate C-Ni(II) intermediate. Herein, we report a Ni(II)-catalyzed enantioselective C-H/N-H annulation with oxabicyclic alkenes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Anhui Normal University, School of Chemistry and Materials Science, 189 Jiuhua South Road, 241002, Wuhu, CHINA.
Achieving axially chiral biaryl dialdehydes through asymmetric catalysis remains significantly challenging due to the lack of efficient strategies. In this report, we developed a rhodium-catalyzed enantioselective C-H amidation through chiral transient directing group strategy. With this new approach, a series of axially chiral amido dialdehydes were achieved in up to 86% yields with 99.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!