In the present study, porcine-derived collagen type I was covalently immobilized on the surface of titanium (Ti) implants via carboxyl groups introduced by bonded p-vinylbenzoic acid to investigate its in vitro biocompatibility with gingival stem cells and in vivo bone regeneration behavior in the edentulous ridges of Lanyu small-ear pigs at weeks 2 and 6 (short-term effectiveness) through micro-computed tomography and histological analysis. Analytical results found that gingival stem cells showed effective adhesion and spreading on these collagen-immobilized implant surfaces. After 2 and 6 weeks of healing, significant differences in Hounsfield units were observed among the control (week 2 (674.2 ± 79.9) ∗∗p < 0.01 and week 6 (596.4 ± 49.6) ∗∗p < 0.01), buffer-coated implant (week 2 (768.1 ± 68.7) ∗p < 0.05 and week 6 (720.4 ± 62.6) ∗p < 0.05), and collagen-immobilized implant (week 2 (828.2 ± 69.4) and week 6 (907.4 ± 63.5)) groups. No significant differences in bone-to-implant contact ratios were discovered between the investigated groups. However, the bone surface area results demonstrated an enhanced bone apposition for the collagen-immobilized implants compared to the control and buffer-coated implants at weeks 2 and 6 post-implantation (∗p < 0.05). Therefore, this preclinical study underscores the advantageous impact of collagen immobilization on Ti implant surfaces for clinical application, substantiating its effectiveness through significant evidence of improved osseointegration at early-stages.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcms.2025.01.018DOI Listing

Publication Analysis

Top Keywords

gingival stem
8
stem cells
8
immobilization biofunctional
4
biofunctional molecule
4
molecule potential
4
potential osteoinductive
4
osteoinductive efficacy
4
efficacy titanium
4
titanium implant
4
implant promoting
4

Similar Publications

In the present study, porcine-derived collagen type I was covalently immobilized on the surface of titanium (Ti) implants via carboxyl groups introduced by bonded p-vinylbenzoic acid to investigate its in vitro biocompatibility with gingival stem cells and in vivo bone regeneration behavior in the edentulous ridges of Lanyu small-ear pigs at weeks 2 and 6 (short-term effectiveness) through micro-computed tomography and histological analysis. Analytical results found that gingival stem cells showed effective adhesion and spreading on these collagen-immobilized implant surfaces. After 2 and 6 weeks of healing, significant differences in Hounsfield units were observed among the control (week 2 (674.

View Article and Find Full Text PDF

Potential trend of regenerative treatment for type I diabetes has been introduced for more than a decade. However, the technologies regarding insulin-producing cell (IPC) production and transplantation are still being developed. Here, we propose the potential IPC production protocol employing mouse gingival fibroblast-derived induced pluripotent stem cells (mGF-iPSCs) as a resource and the pre-clinical approved subcutaneous IPC transplantation platform for further clinical confirmation study.

View Article and Find Full Text PDF

Background: Peri-implantitis is an inflammatory bone disease that seriously affects the health of dental implants. Pyroptosis plays an important role in peri-implantitis and inhibition of pyroptosis may point out a new direction for treating the disease. The long non-coding RNA Negative Regulator of Interferon Response (lncRNA NRIR) is closely related to peri-implantitis and may be involved in the process of pyroptosis.

View Article and Find Full Text PDF

Gingival Debulking Surgery for a Child With Severe Aplastic Anemia: A Case Report.

Spec Care Dentist

January 2025

Paediatric Dentistry, The University of Western Australia, Dental School, Perth, Australia.

Introduction: Aplastic anemia (AA) is a rare condition that frequently manifests with pancytopenia. Management of severe disease is through either allogenic stem cell transplantation or immunosuppressive therapy with supportive care. Drug-induced gingival overgrowth (DIGO) is a potential complication of a number of medications, including cyclosporine and amlodipine.

View Article and Find Full Text PDF

Insulin-like growth factor-1 (IGF-1) plays a vital role in various cellular processes, including those involving stem cells. This study evaluated the effects of IGF-1 on cell survival, osteogenic differentiation, and mRNA expression in gingiva-derived mesenchymal stem cell spheroids. Using concave microwells, spheroids were generated in the presence of IGF-1 at concentrations of 0, 10, and 100 ng/mL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!