Cancer-associated fibroblasts promote oral squamous cell carcinoma progression by targeting ATP7A via exosome-mediated paracrine miR-148b-3p.

Cell Signal

Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:

Published: January 2025

Cuproptosis is a newly discovered form of non-apoptotic cell death. Cancer-associated fibroblasts (CAFs) can secrete various bioactive substances, including exosomes, to promote tumor progression. However, the impact of CAFs on the regulation of copper metabolism and cuproptosis in oral squamous cell carcinomas (OSCC) has not been investigated. In the present study, we revealed that up-regulated expression of ATP7A was correlated with reduced copper abundance, advanced clinicopathological characteristics and poor prognosis in OSCC. The knockdown of ATP7A significantly increased cuproptosis and inhibited malignant progression in vitro, as well as decreased tumor growth and metastasis in vivo. Furthermore, co-culture assays and dual-luciferase reporter demonstrated that upregulated expression of ATP7A in OSCC was due to a reduction of miR-148b-3p in CAF-derived exosomes. The downregulation of miR-148b-3p was observed to significantly elevate ATP7A expression, inhibit cuproptosis and increase malignant progression in vitro. Additionally, in vivo studies demonstrated that this process promoted tumor growth and metastasis. OSCC exhibit a low level of cuproptosis due to the uptake of miR-148b-3p-depleted exosomes from CAFs, leading to a more malignant phenotype in the tumor microenvironment by targeting ATP7A. The results of our experiments suggest that targeting the miR-148b-3p/ATP7A axis might be a promising therapeutic approach for the treatment of oral cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2025.111631DOI Listing

Publication Analysis

Top Keywords

cancer-associated fibroblasts
8
oral squamous
8
squamous cell
8
targeting atp7a
8
expression atp7a
8
malignant progression
8
progression vitro
8
tumor growth
8
growth metastasis
8
atp7a
6

Similar Publications

Cas12a is a next-generation gene editing tool that enables multiplexed gene targeting. Here, we present a mouse model that constitutively expresses enhanced Acidaminococcus sp. Cas12a (enAsCas12a) linked to an mCherry fluorescent reporter.

View Article and Find Full Text PDF

Mechanisms related to tumor evasion from NK cell-mediated immune surveillance remain enigmatic. Dickkopf-1 (DKK1) is a Wnt/β-catenin inhibitor, whose levels correlate with breast cancer progression. We find DKK1 to be expressed by tumor cells and cancer-associated fibroblasts (CAFs) in patient samples and orthotopic breast tumors, and in bone.

View Article and Find Full Text PDF

Diabetes mellitus (DM) and cancer are multifactorial diseases with significant health consequences, and their relationship with aging makes them particularly challenging. Epidemiological data suggests that individuals with DM are more susceptible to certain cancers. This study examined the bioactive properties of Hypericum scabrum extracts, including methanol, hexane, and others, focusing on their inhibitory effects on key enzymes associated with DM and neurodegenerative diseases, such as acetylcholinesterase, butyrylcholinesterase, α-amylase, and α-glucosidase.

View Article and Find Full Text PDF

The cancer-associated fibroblasts (CAFs) in tumor stroma present substantial barriers to drug penetration, resulting in tumor resistance and progression. One promising strategy is to reprogram CAFs into a quiescent state, which necessitates novel approaches. Our study introduces a sequential treatment strategy using chitosan thermosensitive hydrogels loaded with α-Mangostin (α-M), a small molecule drug with antifibrotic properties, aimed at reprogramming CAFs within the breast cancer tumor microenvironment (TME).

View Article and Find Full Text PDF

Cancer-associated fibroblasts promote oral squamous cell carcinoma progression by targeting ATP7A via exosome-mediated paracrine miR-148b-3p.

Cell Signal

January 2025

Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:

Cuproptosis is a newly discovered form of non-apoptotic cell death. Cancer-associated fibroblasts (CAFs) can secrete various bioactive substances, including exosomes, to promote tumor progression. However, the impact of CAFs on the regulation of copper metabolism and cuproptosis in oral squamous cell carcinomas (OSCC) has not been investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!