Lipase enzymes play a vital role in digestion and nutrient metabolism in host organisms, with symbiotic bacteria producing abundant enzymes, carbohydrates, vitamins, and other nutrients. This study aimed to isolate, identify, and screen lipase-producing bacteria from the gut of Systomus sarana, optimize enzyme production using Response Surface Methodology (RSM), and characterize the extracted lipase protein. A total of 11 bacterial strains were isolated and identified through 16S rRNA sequencing. Among these, Bacillus thuringiensis (SS5) exhibited the highest enzyme index (5.46 mm) and crude enzyme activity (109 U/mL). Using RSM optimization, growth conditions were refined to pH 7.5, temperature 35 °C, incubation time 30 h, with 2.3 % peptone and 2.34 % lactose, resulting in enhanced lipase production of 210 U/mL. The partially purified protein (~30 kDa) was characterized by SDS-PAGE and FTIR spectroscopy, revealing functional groups such as acids, aliphatic amines, and aromatics. MALDI-TOF/MS analysis identified eight peptides, with one major peptide sequence (IYVYYSDIMHVMNTMGQR). The modelled protein structure based on 259 amino acids was validated through homology modeling. Molecular docking studies demonstrated strong binding affinities (-7.36 to -8.95 kcal/mol) between the lipase protein and fatty acids (linoleic acid, linolenic acid, oleic acid, palmitic acid) as well as tripalmitin. These findings highlight the potential of fish gut-derived Bacillus thuringiensis as a valuable source of lipase enzymes for industrial applications such as bioremediation and biodiesel production. Further exploration of these bacterial enzymes within their native ecosystems is recommended to expand their biotechnological utility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.140428DOI Listing

Publication Analysis

Top Keywords

bacillus thuringiensis
12
rsm optimization
8
enzyme production
8
lipase enzymes
8
lipase protein
8
lipase
6
fish gut
4
gut symbiotic
4
symbiotic bacterium
4
bacterium bacillus
4

Similar Publications

Lipase enzymes play a vital role in digestion and nutrient metabolism in host organisms, with symbiotic bacteria producing abundant enzymes, carbohydrates, vitamins, and other nutrients. This study aimed to isolate, identify, and screen lipase-producing bacteria from the gut of Systomus sarana, optimize enzyme production using Response Surface Methodology (RSM), and characterize the extracted lipase protein. A total of 11 bacterial strains were isolated and identified through 16S rRNA sequencing.

View Article and Find Full Text PDF

The effect of on the viability and antimicrobial activity of the ectoparasitoid was evaluated in laboratory experiments. Two lines of the parasitoid, -infected (W+) and -free (W-), were used. Parasitoid larvae were fed with a host orally infected with a sublethal dose of (Bt) and on the host uninfected with Bt.

View Article and Find Full Text PDF

The Cry1Fa insecticidal protein from (Bt) was expressed on the surface of (Bs) spores to create transgenic Bs spores referred to as Spore-Cry1Fa. Cry1Fa, along with its leader sequence, was connected to the carboxyl end of a Bs spore outercoat protein, CotC, through a flexible linker. The Arg-27 residue of the Cry1Fa protein was mutated to Leu to prevent detachment from the spores due to protease digestion.

View Article and Find Full Text PDF

Culicoides oxystoma Kieffer (Diptera: Ceratopogonidae) transmits many pathogens, including seven viruses, four protozoa and one nematode. This species has a wide distribution range across northern Afro-tropical, Palearctic, Australian, Indo-Malayan realms with a broad host spectrum, including cattle, buffaloes, sheep, pigs, dogs, horses and even humans. The heterogeneous nature of Culicoides' blood-feeding patterns is well documented, but the influence of various host blood meal sources on gut bacterial composition remains scant.

View Article and Find Full Text PDF

Background: Crocidosema aporema (Walsingham 1914) has historically been the main bud borer species in soybean in Brazil; however, a recent study reported that this species is not C. aporema but an undescribed species. In recent seasons, injury by Crocidosema sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!