Interfacial properties of whey protein hydrolysates monitored by quartz crystal microbalance with dissipation.

Int J Biol Macromol

Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China. Electronic address:

Published: January 2025

Whey protein hydrolysate (WPH) can be used to develop hypoallergenic foods. However, the stabilization mechanism of WPH-stabilized emulsion is not fully understood. Here, a real-time quartz crystal microbalance with dissipation monitoring (QCM-D) was used in conjunction with a rheometer to investigate the interfacial properties of WPH. Initially, the properties of WPH with different (6 %, 8 %, 10 %, 12 % and 14 %) degree of hydrolysis (DH) were investigated. 8 %-WPH demonstrated superior emulsifying (11.49 m/g, 81.34 min) and foaming properties (14.00 %, 7.78 %). Subsequently, the stability of different WPH-stabilized emulsions were examined. 8 %-WPH emulsion exhibited the lowest centrifugal precipitation rate (4.50 %) and Turbiscan stability index (2.24). Additionally, the 8 %-WPH promoted the adsorption and retention of molecules at the interface, which effectively reduced the interfacial tension. QCM-D measurement further proved that the 8 %-WPH possessed excellent adsorption mass and viscoelasticity. Finally, we characterized the interface-adsorbed WPH. The 8 %-WPH exhibited the highest surface hydrophobicity (1072.60) and flexibility (0.22). Notably, the 8 %-WPH showed the highest β-sheet (41.11 %). This led to stronger interactions between neighboring interfacial WPH molecules, which protected the emulsion droplets from destabilizing factors. Nevertheless, excessive hydrolysis (10 %-14 %) caused WPH molecules aggregation, which consequently diminished the viscoelasticity of the interfacial film and the emulsion stability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.140368DOI Listing

Publication Analysis

Top Keywords

interfacial properties
8
whey protein
8
quartz crystal
8
crystal microbalance
8
microbalance dissipation
8
properties wph
8
wph molecules
8
wph
6
8 %-wph
6
interfacial
5

Similar Publications

The construction of thin film heterostructures has been a widely successful archetype for fabricating materials with emergent physical properties. This strategy is of particular importance for the design of multilayer magnetic architectures in which direct interfacial spin-spin interactions between magnetic phases in dissimilar layers lead to emergent and controllable magnetic behavior. However, crystallographic incommensurability and atomic-scale interfacial disorder can severely limit the types of materials amenable to this strategy, as well as the performance of these systems.

View Article and Find Full Text PDF

Interfacial properties of whey protein hydrolysates monitored by quartz crystal microbalance with dissipation.

Int J Biol Macromol

January 2025

Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China. Electronic address:

Whey protein hydrolysate (WPH) can be used to develop hypoallergenic foods. However, the stabilization mechanism of WPH-stabilized emulsion is not fully understood. Here, a real-time quartz crystal microbalance with dissipation monitoring (QCM-D) was used in conjunction with a rheometer to investigate the interfacial properties of WPH.

View Article and Find Full Text PDF

Janus particles (JPs), initially introduced as soft matter, have evolved into a distinctive class of materials that set them apart from traditional surfactants, dispersants, and block copolymers. This mini-review examines the similarities and differences between JPs and their molecular counterparts to elucidate the unique properties of JPs. Key studies on the assembly behavior of JPs in bulk phases and at interfaces are reviewed, highlighting their unique ability to form diverse, complex structures.

View Article and Find Full Text PDF

Propensity of Water Self-Ions at Air(Oil)-Water Interfaces Revealed by Deep Potential Molecular Dynamics with Enhanced Sampling.

Langmuir

January 2025

Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.

The preference of water self-ions (hydronium and hydroxide) toward air/oil-water interfaces is one of the hottest topics in water research due to its importance for understanding properties, phenomena, and reactions of interfaces. In this work, we performed enhanced-sampling molecular dynamics simulations based on state-of-the-art neural network potentials with approximate M06-2X accuracy to investigate the propensity of hydronium and hydroxide ions at air/oil(decane)-water interfaces, which can simultaneously describe well the water autoionization process forming these ions, the recombination of ions, and the ionic distribution along the normal distance to the interface by employing a set of appropriate Voronoi collective variables. A stable ionic double-layer distribution is observed near the air-water interface, while the distribution is different at oil-water interfaces, where hydronium tends to be repelled from the interface into the bulk water, whereas hydroxide, with an interfacial stabilization free energy of -0.

View Article and Find Full Text PDF

The effect of growth temperature and subsequent annealing on the epitaxy of both single- and few-layer TaSe on Se-terminated GaP(111) substrates is investigated. The selective growth of the 1T and 1H phases is shown up to 1 ML according to X-ray and ultraviolet photoelectron spectroscopies. The 1H monolayer, favored at low temperatures, exhibits a very homogeneous coverage after annealing, while the 1T ML, grown at high temperatures, is characterized by a better in-plane orientation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!