Black and odorous waters (BOWs) are a serious environmental problem frequently reported over the past few decades. Microorganisms are identified as implementors of the black and odorous phenomenon, which play a crucial role in the decomposition and transformation of pollutants within the BOWs. However, the information on the role of microorganisms in BOWs remains elusive. BOWs are characterized by high concentrations of organic compounds and limited oxygen inputs, which have facilitated the emergence of distinct microbial species. The algae, hydrolytic and fermentative bacterium, sulfate-reducing bacteria, Fe-reducing bacteria and other microorganisms play an important role in the process of blackening and odorization of water. Studying these specific microbial taxonomies provides valuable insights into their adaptations and contributions to the overall functioning of BOWs. This study comprehensively reviews 1) the microbial community structure, assembly and succession in BOWs; 2) the key microbial profiles involved in BOWs formation; 3) the interspecies interactions process in the BOWs, which are the issues easily overlooked but deserve further research and development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2025.120972 | DOI Listing |
Environ Res
January 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China. Electronic address:
Black and odorous waters (BOWs) are a serious environmental problem frequently reported over the past few decades. Microorganisms are identified as implementors of the black and odorous phenomenon, which play a crucial role in the decomposition and transformation of pollutants within the BOWs. However, the information on the role of microorganisms in BOWs remains elusive.
View Article and Find Full Text PDFStroke
February 2025
Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing (K.W.C., C.L., Z.L., M.R., H.C.).
Background: Poor olfaction may be associated with adverse cerebrovascular events, but empirical evidence is limited. We aimed to investigate the association of olfaction with the risk of stroke in the Atherosclerosis Risk in Communities Study.
Methods: We included 5799 older adults with no history of stroke at baseline from 2011 to 2013 (75.
Sci Total Environ
January 2025
Department of Civil Engineering, City College of New York, New York, NY 10031, United States.
Odor emissions, primarily from anthropogenic activities like waste treatment and industrial processes, pose significant challenges in urban areas, particularly near water resource recovery facilities. While these emissions are generally not toxic, they can adversely affect community wellbeing and investment, prompting stricter regulations in some regions. For example, New York State's hydrogen sulfide guidelines are more stringent than federal standards.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Embrapa Recursos Genéticos e Biotecnologia, Laboratório de Semioquímicos, Brasília, DF, 70297-400, Brazil.
The small black stem bug, Paratibraca (= Glyphepomis) spinosa (Campos and Grazia 1998), is a rice pest in Brazil and is part of a complex of stink bugs that includes Oebalus poecilus (Dallas) and Tibraca limbativentris Stål. Together, these pentatomid species pose a serious threat to rice crops throughout South America. In this study, we identified the sex pheromone of P.
View Article and Find Full Text PDFMolecules
January 2025
National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China.
Lichuan black tea (LBT) is a well-known congou black tea in China, but there is relatively little research on its processing technology. Echa No. 10 is the main tea tree variety for producing LBT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!