D-allulose enhances lipid oxidation in HepG2 cells via peroxisome proliferator-activated receptor α (PPARα).

Biochim Biophys Acta Mol Cell Biol Lipids

Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, Jacksonville, FL 32209, United States of America.

Published: January 2025

Lipid accumulation in hepatocytes in non-alcoholic steatohepatitis (NASH) is attributed partly to loss of insulin-responsiveness and/or an increased pro-inflammatory state. Since the rare sugar D-allulose has insulin mimetic and anti-inflammatory properties, its effects on lipid accumulation in liver-derived cells was tested. In HepG2 cells exposed to 200 μM oleic acid for 72 h, D-allulose treatment decreased intracellular lipid accumulation with an IC = 0.45 ± 0.07 mM. A similar effect was observed in cells treated with 10 μM gemfibrozil. D-allulose and gemfibrozil treatment increased oleic acid β-oxidation. Both D-allulose and gemfibrozil increased peroxisome proliferator-activated receptor α (PPARα) expression (two-fold) relative to control cells, while retinoid X receptor was unchanged. D-allulose and gemfibrozil increased PPARα-dependent genes including those involved in fatty acid β-oxidation (acyl-coenzyme A oxidase 1, long-chain-fatty-acid-coenzyme A ligase 5, and carnitine palmitoyltransferase 1 A). D-allulose and gemfibrozil also increased PPARα reporter gene expression and phosphorylation (Serine 12) which were both inhibited by the mitogen-activated protein (MAP) kinase inhibitor PD098059. Other MAP kinase inhibitors, including SB203580, SP600125, and BIX10289 had no effect on reporter gene expression. Oleic acid treatment, but not D-allulose or gemfibrozil, decreased sterol response element binding protein 1 and sterol response element binding protein 2 expression relative to cells not exposed to oleic acid, while peroxisome proliferator-activated receptor γ expression did not change. These results indicate that D-alluose mimics gemfibrozil effects on lipid content in HepG2 cells by promoting fatty acid β-oxidation via PPARα .

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2025.159599DOI Listing

Publication Analysis

Top Keywords

d-allulose gemfibrozil
20
oleic acid
16
hepg2 cells
12
peroxisome proliferator-activated
12
proliferator-activated receptor
12
lipid accumulation
12
acid β-oxidation
12
gemfibrozil increased
12
d-allulose
8
receptor pparα
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!