Hair cells (HCs) are essential for vestibular function, and irreversible damage to vestibular HCs in mammals is closely associated with vertigo. The stimulation of HC regeneration through exogenous gene delivery represents an ideal therapeutic approach for restoring vestibular function. Overexpression of Atoh1, Pou4f3, and Gfi1 (collectively referred to as APG) has demonstrated efficacy in promoting HC regeneration in the cochlea. However, the effects of APG on vestibular HC regeneration remain unclear. Here, we used adeno-associated virus-inner ear (AAVie) as a carrier to deliver APG to the utricles of neonatal mice and assessed the morphology and number of HCs and supporting cells (SCs) by immunofluorescence staining. GLAST;Rosa26 mouse line was used to trace SCs. The results showed that APG overexpression resulted in substantial SC transdifferentiation into HCs in the neonatal mouse utricle. Furthermore, APG overexpression maintained SC number by facilitating SC proliferation. Continuous Atoh1 overexpression caused stereocilia damage, which was alleviated by APG overexpression. This study highlights the potential of regulating multiple transcription factors to promote vestibular HC regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2025.138136DOI Listing

Publication Analysis

Top Keywords

apg overexpression
12
atoh1 pou4f3
8
pou4f3 gfi1
8
supporting cells
8
hair cells
8
neonatal mouse
8
mouse utricle
8
vestibular function
8
vestibular regeneration
8
apg
6

Similar Publications

Hair cells (HCs) are essential for vestibular function, and irreversible damage to vestibular HCs in mammals is closely associated with vertigo. The stimulation of HC regeneration through exogenous gene delivery represents an ideal therapeutic approach for restoring vestibular function. Overexpression of Atoh1, Pou4f3, and Gfi1 (collectively referred to as APG) has demonstrated efficacy in promoting HC regeneration in the cochlea.

View Article and Find Full Text PDF

The novel BCL-2/BCL-XL inhibitor APG-1252-mediated cleavage of GSDME enhances the antitumor efficacy of HER2-targeted therapy in HER2-positive gastric cancer.

Acta Pharmacol Sin

November 2024

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.

HER2-positive gastric cancer has a poor prognosis, with a high incidence of drug resistance and a lack of effective treatments for drug-resistant patients. The exploration of the mechanism of resistance to HER2-targeted therapy in HER2-positive gastric cancer and the identification of effective strategies to reverse it are urgently needed. In this study, we found that HER2-targeted agents upregulated the expression of GSDME and that the overexpression of GSDME attenuated the sensitivity of HER2-targeted agents.

View Article and Find Full Text PDF

Mild photothermal therapy (PTT) is a spatiotemporally controllable method that utilizes the photothermal effect at relatively low temperatures (40-45 °C) to especially eliminate tumor tissues with negligible side effects on the surrounding normal tissues. However, the overexpression of heat shock protein 70 (HSP70) and limited effect of single treatment drastically impede the therapeutic efficacy. Herein, the constructed multifunctional core-shell structured Ag-Cu@SiO-PDA/GOx nanoreactors (APG NRs) that provide a dual inhibition of HSP70 strategy for the second near-infrared photoacoustic (NIR-II PA) imaging-guided combined mild PTT/chemodynamic therapy (CDT).

View Article and Find Full Text PDF

The present study aimed to explore the potential ameliorative effect of apigenin (APG) against diabetes-associated genitourinary complications in rats. A diabetic rat model was induced by the intraperitoneal injection of streptozotocin (STZ). All experimental animals were treated with vehicle or vehicle plus APG at a dose of 0.

View Article and Find Full Text PDF

Targeting the induction of apoptosis is a promising cancer therapeutic strategy with some clinical success. This study focused on evaluating the therapeutic efficacy of the novel Bcl-2/Bcl-X dual inhibitor, APG1252-M1 (also named APG-1244; an in vivo active metabolite of APG1252 or pelcitoclax), as a single agent or in combination, against non-small cell lung cancer (NSCLC) cells. APG1252-M1 effectively decreased the survival of some NSCLC cell lines expressing low levels of Mcl-1 and induced apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!