Respiratory syncytial virus (RSV) is one of the most common viruses leading to lower respiratory tract infections (LRTIs) in children and elderly individuals worldwide. Although significant progress in the prevention and treatment of RSV infection was made in 2023, with two anti-RSV vaccines and one monoclonal antibody approved by the FDA, there is still a lack of postinfection therapeutic drugs in clinical practice, especially for the pediatric population. In recent years, with an increasing understanding of the pathogenic mechanisms of RSV, drugs and drug candidates, have shown great potential for clinical application. In this review, we categorize and discuss promising anti-RSV drug candidates that have been in preclinical or clinical development over the last five years.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virs.2025.01.003 | DOI Listing |
J Transl Med
January 2025
Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
Background: Drug resistance constitutes one of the principal causes of poor prognosis in breast cancer patients. Although cancer cells can maintain viability independently of mitochondrial energy metabolism, they remain reliant on mitochondrial functions for the synthesis of new DNA strands. This dependency underscores a potential link between mitochondrial energy metabolism and drug resistance.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education, China, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan City, 030000, Shanxi Province, China.
There are many similarities between early embryonic development and tumorigenesis. The occurrence of neural tube defects (NTDs) and glioblastoma (GBM) are both related to the abnormal development of neuroectodermal cells. To obtain genes related to both NTDs and GBM, as well as small molecule drugs with potential clinical application value.
View Article and Find Full Text PDFACS Sens
January 2025
Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia.
Recent examples of immune responses directed against the synthetic polymer poly(ethylene glycol) (PEG) have led to the development of biocompatible polymers, which are viewed as promising candidates to act as surrogate materials for use in biological applications, such as hydrophilic poly(2-oxazoline)s (POx). Despite this, the characterization of critical aspects of the immune response against these emerging materials is sparse, in part because no known monoclonal antibodies (mAbs) against this family of synthetic material have been reported. To advance the understanding of such responses, we report the successful isolation and characterization of hybridoma-derived mAbs with excellent specificity for different POx species and notable selectivity for highly branched polymer architectures over linear systems.
View Article and Find Full Text PDFDrug Metab Dispos
January 2025
Simcyp Division, Certara UK, Ltd, Princeton, New Jersey. Electronic address:
The utility of physiologically based pharmacokinetic (PBPK) models in support of drug development has been well documented. During the discovery stage, PBPK modeling has increasingly been applied for early risk assessment, prediction of human dose, toxicokinetic dose projection, and early formulation assessment. Previous review articles have proposed model-building and application strategies for PBPK-based first-in-human predictions with comprehensive descriptions of the individual components of PBPK models.
View Article and Find Full Text PDFDrug Metab Dispos
January 2025
Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan.
Pirfenidone (PIR) is used in the treatment of idiopathic pulmonary fibrosis. After oral administration, it is metabolized by cytochrome P450 1A2 to 5-hydroxylpirfenidone (5-OH PIR) and further oxidized to 5-carboxylpirfenidone (5-COOH PIR), a major metabolite excreted in the urine (90% of the dose). This study aimed to identify enzymes that catalyze the formation of 5-COOH PIR from 5-OH PIR in the human liver.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!