Modular Access to Chiral Benzylamines via Ni/Photoredox-Catalyzed Multicomponent Cross-Electrophile Coupling.

Org Lett

School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.

Published: January 2025

A Ni/photoredox dual-catalyzed multicomponent cross-electrophile coupling of N-vinyl amides with (hetero)aryl halides and (2°, 3°)-alkyl redox-active esters in the presence of cheap reductant Hantzsch ester is reported here. This reductive protocol provides direct access to various synthetically challenging chiral α-arylamides in good yields and excellent enantioselectivities (up to 99% ee, with the majority exceeding 97% ee), which can be further derived into chiral primary and secondary amines. Preliminary experimental studies shed light on the potential catalytic pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.4c04859DOI Listing

Publication Analysis

Top Keywords

multicomponent cross-electrophile
8
cross-electrophile coupling
8
modular access
4
access chiral
4
chiral benzylamines
4
benzylamines ni/photoredox-catalyzed
4
ni/photoredox-catalyzed multicomponent
4
coupling ni/photoredox
4
ni/photoredox dual-catalyzed
4
dual-catalyzed multicomponent
4

Similar Publications

Modular Access to Chiral Benzylamines via Ni/Photoredox-Catalyzed Multicomponent Cross-Electrophile Coupling.

Org Lett

January 2025

School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, P. R. China.

A Ni/photoredox dual-catalyzed multicomponent cross-electrophile coupling of N-vinyl amides with (hetero)aryl halides and (2°, 3°)-alkyl redox-active esters in the presence of cheap reductant Hantzsch ester is reported here. This reductive protocol provides direct access to various synthetically challenging chiral α-arylamides in good yields and excellent enantioselectivities (up to 99% ee, with the majority exceeding 97% ee), which can be further derived into chiral primary and secondary amines. Preliminary experimental studies shed light on the potential catalytic pathways.

View Article and Find Full Text PDF

Current-Regulated Selective Nickel-Catalyzed Electroreductive Cross-Electrophile Carbonylation to β/γ-Hydroxy Ketones.

Angew Chem Int Ed Engl

December 2024

School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi An Shi, Xi'an 710049, P. R. China.

The nickel catalyzed multi-component cross-electrophile carbonylation which emerges as a powerful and efficient method for constructing diverse ketones has attracted increasing attention of organic chemists. However, the selectivity of this reaction poses a significant challenge. In this work, we have developed a current-regulated selective nickel-catalyzed electroreductive cross-electrophile carbonylation, which offers a direct convergent synthesis of β/γ-hydroxy ketones, which represent pivotal structural motifs found in numerous natural products, bioactive molecules, pharmaceutical compounds, and essential building blocks.

View Article and Find Full Text PDF

Selective Ni(I)/Ni(III) Process for Consecutive Geminal C(sp)-C(sp) Bond Formation.

J Am Chem Soc

December 2024

School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.

Ni-catalyzed multicomponent cross-couplings have emerged as a powerful strategy for efficiently constructing complex molecular architectures from a diverse array of organic halides. Despite its potential, selectively forming multiple chemical bonds in a single operation, particularly in the realm of cross-electrophile coupling catalysis, remains a significant challenge. In this study, we have developed a consecutive open-shell reductive Ni catalysis, enabling the formation of two geminal C(sp)-C(sp) bonds from two stereoelectronically similar C(sp)-I reactants in conjunction with a methylene electrophile.

View Article and Find Full Text PDF

Zinc Promoted Cross-Electrophile Sulfonylation to Access Alkyl-Alkyl Sulfones.

Adv Sci (Weinh)

August 2024

School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

The transition metal-catalyzed multi-component cross-electrophile sulfonylation, which incorporates SO as a linker within organic frameworks, has proven to be a powerful, efficient, and cost-effective means of synthesizing challenging alkyl-alkyl sulfones. Transition metal catalysts play a crucial role in this method by transferring electrons from reductants to electrophilic organohalides, thereby causing undesirable side reactions such as homocoupling, protodehalogenation, β-hydride elimination, etc. It is worth noting that tertiary alkyl halides have rarely been demonstrated to be compatible with current methods owing to various undesired side reactions.

View Article and Find Full Text PDF

NiH-Catalyzed Functionalization of Remote and Proximal Olefins: New Reactions and Innovative Strategies.

Acc Chem Res

December 2022

State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.

Transition metal hydride catalyzed functionalization of remote and proximal olefins has many advantages over conventional cross-coupling reactions. It avoids the separate, prior generation of stoichiometric amounts of organometallic reagents and the use of preformed organometallic reagents, which are sometimes hard to access and may compromise functional group compatibility. The migratory insertion of metal hydride complexes generated into readily available alkene starting materials, the hydrometalation process, provides an attractive and straightforward route to alkyl metal intermediates, which can undergo a variety of sequential cross-coupling reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!