A miniature FUS transducer based on an acoustic Fresnel lens for integration with a surgical robot.

Ultrasonics

Centre for Medical & Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, UK. Electronic address:

Published: January 2025

A new focussed ultrasound surgery (FUS) transducer for soft tissue ablation is proposed, with a miniaturised configuration that can be readily integrated with a surgical robot. The transducer fills a gap in FUS technology at this size, with capability for acoustic focus steering within a very simple transducer configuration. Miniaturisation is enabled by the incorporation of an acoustic Fresnel lens as the focussing element driven by a single piezoceramic disc. The transducer housing and Fresnel lens are made from photopolymer resins in a mask stereolithography (mSLA) printer and a microballoon filled epoxy backing layer is added to approximate an air backing. In this study, four versions of the miniature FUS transducer were fabricated and tested, each incorporating a different piezoceramic material: a soft PZT, a specialised composition for high intensity focused ultrasound, a low acoustic impedance porous PZT, and a lead free piezoceramic. It is shown that the FUS transducer containing the porous piezoceramic disc, which has lower piezoelectric and coupling coefficients than the other materials, achieves the highest focal zone intensity. Through finite element analysis (FEA) and experimental characterisations of the acoustic field, the FUS transducer is demonstrated to be capable of both creating and steering a focal intensity suitable for tissue ablation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2025.107587DOI Listing

Publication Analysis

Top Keywords

fus transducer
20
fresnel lens
12
miniature fus
8
transducer
8
acoustic fresnel
8
surgical robot
8
tissue ablation
8
piezoceramic disc
8
acoustic
5
fus
5

Similar Publications

A miniature FUS transducer based on an acoustic Fresnel lens for integration with a surgical robot.

Ultrasonics

January 2025

Centre for Medical & Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, UK. Electronic address:

A new focussed ultrasound surgery (FUS) transducer for soft tissue ablation is proposed, with a miniaturised configuration that can be readily integrated with a surgical robot. The transducer fills a gap in FUS technology at this size, with capability for acoustic focus steering within a very simple transducer configuration. Miniaturisation is enabled by the incorporation of an acoustic Fresnel lens as the focussing element driven by a single piezoceramic disc.

View Article and Find Full Text PDF

Background: The main goal of the study was to find the magnetic resonance imaging (MRI) parameters that optimize contrast between tissue and thermal lesions produced by focused ultrasound (FUS) using T1-weighted (T1-W) and T2-weighted (T2-W) fast spin echo (FSE) sequences.

Methods: FUS sonications were performed in porcine tissue using a single-element FUS transducer of 2.6 MHz in 1.

View Article and Find Full Text PDF

This paper describes the design and initial proof-of-concept of a single pre-clinical transcranial focused ultrasound (FUS) system capable of performing histotripsy (mechanical ablation), hyperthermia, blood-brain barrier opening (BBBO), sonodynamic therapy, or neuromodulation in a murine brain. We have termed it the All-in-One FUS system for murine brain studies, which is the first FUS system of its kind. The 1.

View Article and Find Full Text PDF

This study presented a novel approach for the precise ablation of breast tumors using focused ultrasound (FUS), leveraging a physics-informed neural network (PINN) integrated with a realistic breast model. FUS has shown significant promise in treating breast tumors by effectively targeting and ablating cancerous tissue. This technique employs concentrated ultrasonic waves to generate intense heat, effectively destroying cancerous tissue.

View Article and Find Full Text PDF

CircINADL promotes nasopharyngeal carcinoma metastasis by inhibiting HuR ubiquitin degradation and disrupting the hippo signaling pathway.

Cell Signal

February 2025

The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China. Electronic address:

Distant metastasis is a primary factor contributing to the low survival rate of patients with nasopharyngeal carcinoma (NPC). Circular RNAs (circRNAs) are increasingly recognized for their roles in cancer initiation and progression. However, the mechanisms underlying the abnormal expression and biological function of circRNA in NPC remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!