Over the past few decades, significant efforts have been dedicated to advancing technologies for the removal of micropollutants from water. Achieving complete pure water with a single treatment process is challenging and nearly impossible. One promising approach among various alternatives is adopting hybrid technology, which is considered as a win-win technology. It utilizes the advantages of each technique, resulting in the enhancement of wastewater treatment. This pioneering idea is designed to significantly enhance water quality, addressing real-world implementation hurdles, and offer a promising solution to the worldwide issue of water scarcity. This review assesses the merits and drawbacks of the hybrid photocatalytic membrane technology employed in wastewater treatment. Notably, this hybrid process not only improves the membrane filtration capacity and permeates water quality but also enhances the antifouling performance of the membrane. However, it is crucial to acknowledge potential drawbacks, such as membrane structure degradation and photocatalytic activity loss in nanoparticles during the operation period. While improvements in wastewater treatment efficiency are evident, there remains ample room for further enhancements. The review summarizes the future directions and challenges of implementing such an integrated system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/adb040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!