AI Article Synopsis

  • Synchronization in brain networks is crucial for processing information, but time delays in signal transmission can significantly influence this process, especially in more complex spiking neural networks.
  • The study involves investigating synchronization conditions and dynamics in a two-dimensional network of adaptive exponential integrate-and-fire neurons, focusing on how delay impacts this behavior.
  • Findings reveal that synchronization patterns depend on a combination of properties at different levels, including individual neuron characteristics, network connectivity, and long-range connections, which together affect the emergent activity patterns in the brain.

Article Abstract

Synchronization is fundamental for information processing in oscillatory brain networks and is strongly affected by time delays via signal propagation along long fibers. Their effect, however, is less evident in spiking neural networks given the discrete nature of spikes. To bridge the gap between these different modeling approaches, we study the synchronization conditions, dynamics underlying synchronization, and the role of the delay of a two-dimensional network model composed of adaptive exponential integrate-and-fire neurons. Through parameter exploration of neuronal and network properties, we map the synchronization behavior as a function of unidirectional long-range connection and the microscopic network properties and demonstrate that the principal network behaviors comprise standing or traveling waves of activity and depend on noise strength, E/I balance, and voltage adaptation, which are modulated by the delay of the long-range connection. Our results show the interplay of micro- (single neuron properties), meso- (connectivity and composition of the neuronal network), and macroscopic (long-range connectivity) parameters for the emergent spatiotemporal activity of the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0158186DOI Listing

Publication Analysis

Top Keywords

spiking neural
8
neural networks
8
time delays
8
neuronal network
8
network properties
8
long-range connection
8
synchronization
5
network
5
synchronization spiking
4
networks short
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!