Sample pretreatment for mass spectrometry (MS)-based metabolomics and lipidomics is normally conducted independently with two sample aliquots and separate matrix cleanup procedures, making the two-step process sample-intensive and time-consuming. Herein, we introduce a high-throughput pretreatment workflow for integrated nontargeted metabolomics and lipidomics leveraging the enhanced matrix removal (EMR)-lipid microelution 96-well plates. The EMR-lipid technique was innovatively employed to effectively separate and isolate non-lipid small metabolites and lipids in sequence using significantly reduced sample amounts and organic solvents. Our proposed methodology enables parallel profiling of metabolome and lipidome within a single sample aliquot using ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Following method development and optimization with representative metabolites at levels comparable to those detected in human blood, the optimized workflow was applied to prepare metabolome-lipidome from maternal and umbilical cord-blood sera prior to comprehensive profiling using three different UHPLC columns. Results indicate that, compared with conventional two-step metabolomics-lipidomics sample pretreatment workflow, this new approach substantially reduces sample amount and processing time, while still preserving metabolite profiles and revealing additional MS features. Over 2500 metabolites were annotated in human sera with >1000 shared across maternal and cord blood. The shared metabolites are closely linked to various physiological functions, including nutrient transfer, hormonal regulation, waste product clearance, and metabolic programming, underscoring the significant impact of maternal metabolic activities on neonatal metabolic health. In summary, the proposed workflow enables efficient sample pretreatment for nontargeted metabolomics-lipidomics using one single sample while achieving broad metabolite coverage, highlighting its remarkable applicability in clinical and preclinical research.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c03222DOI Listing

Publication Analysis

Top Keywords

metabolomics lipidomics
12
sample pretreatment
12
integrated nontargeted
8
nontargeted metabolomics
8
enhanced matrix
8
maternal umbilical
8
cord blood
8
sample
8
mass spectrometry
8
pretreatment workflow
8

Similar Publications

Sample pretreatment for mass spectrometry (MS)-based metabolomics and lipidomics is normally conducted independently with two sample aliquots and separate matrix cleanup procedures, making the two-step process sample-intensive and time-consuming. Herein, we introduce a high-throughput pretreatment workflow for integrated nontargeted metabolomics and lipidomics leveraging the enhanced matrix removal (EMR)-lipid microelution 96-well plates. The EMR-lipid technique was innovatively employed to effectively separate and isolate non-lipid small metabolites and lipids in sequence using significantly reduced sample amounts and organic solvents.

View Article and Find Full Text PDF

Current perspectives for metabolomics and lipidomics in dyslipidemia of acne vulgaris: a mini review.

Front Med (Lausanne)

January 2025

Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

Acne vulgaris (AV) is a common inflammatory disorder involving the pilosebaceous unit. Many studies have reported that people with AV have higher levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-c) compared to healthy controls. Hence, they concluded that an unhealthy lipid profile is an independent risk factor for AV.

View Article and Find Full Text PDF

Background: Dyslipidemia is closely related to diabetic neuropathy. This study examined the potential causal relationship involving 179 lipid species and the disease.

Methods: The pooled data on 179 lipid species and diabetic neuropathy were obtained from previous genome-wide association studies (GWAS).

View Article and Find Full Text PDF

Ketogenesis is a dynamic metabolic conduit supporting hepatic fat oxidation particularly when carbohydrates are in short supply. Ketone bodies may be recycled into anabolic substrates, but a physiological role for this process has not been identified. Here, we use mass spectrometry-based C-isotope tracing and shotgun lipidomics to establish a link between hepatic ketogenesis and lipid anabolism.

View Article and Find Full Text PDF

Interorgan lipid transport is crucial for organism development and the maintenance of physiological function. Here, we demonstrate that long-chain acyl-CoA synthetase (dAcsl), which catalyzes the conversion of fatty acids into acyl-coenzyme As (acyl-CoAs), plays a critical role in regulating systemic lipid homeostasis. dAcsl deficiency in the fat body led to the ectopic accumulation of neutral lipids in the gut, along with significantly reduced lipoprotein contents in both the fat body and hemolymph.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!