Direct Cross-Couplings of Aryl Nonaflates with Aryl Bromides under Nickel Catalysis.

J Org Chem

Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.

Published: January 2025

The direct cross-couplings of aryl nonaflates with aryl bromides could be successfully accomplished by utilizing nickel as the catalyst, magnesium as the metal mediator, and lithium chloride as the additive. The reactions proceeded efficiently in THF at room temperature to produce the desired biaryls in moderate to good yields, showing both a reasonable substrate scope and functional group tolerance. Additionally, an equally good performance could be realized when the reaction was subjected to scale-up synthesis. Preliminary study suggested that the reaction presumably proceeds through the in situ formation of an arylmagnesium reagent as the key reaction intermediate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.4c02777DOI Listing

Publication Analysis

Top Keywords

direct cross-couplings
8
cross-couplings aryl
8
aryl nonaflates
8
nonaflates aryl
8
aryl bromides
8
aryl
4
bromides nickel
4
nickel catalysis
4
catalysis direct
4
bromides accomplished
4

Similar Publications

Direct Cross-Couplings of Aryl Nonaflates with Aryl Bromides under Nickel Catalysis.

J Org Chem

January 2025

Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.

The direct cross-couplings of aryl nonaflates with aryl bromides could be successfully accomplished by utilizing nickel as the catalyst, magnesium as the metal mediator, and lithium chloride as the additive. The reactions proceeded efficiently in THF at room temperature to produce the desired biaryls in moderate to good yields, showing both a reasonable substrate scope and functional group tolerance. Additionally, an equally good performance could be realized when the reaction was subjected to scale-up synthesis.

View Article and Find Full Text PDF

Heteroaryl-Fused Triazapentalenes: Synthesis and Aggregation-Induced Emission.

Molecules

January 2025

Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.

A pyridine-fused triazapentalene shows weak fluorescence in solution and is readily accessible via nitrene-mediated cyclization. In this study, a modified Cadogan reaction was used to synthesize . Palladium-catalyzed reactions have been used as post-functionalization methods.

View Article and Find Full Text PDF

Amino alcohols are vital in natural products, pharmaceuticals and agrochemicals, and as key building blocks for various applications. Traditional synthesis methods often rely on polar bond retrosynthetic analysis, requiring extensive protecting group manipulations that complicate direct access. Here we show a streamlined approach using a serine-derived chiral carboxylic acid in stereoselective electrocatalytic decarboxylative transformations, enabling efficient access to enantiopure amino alcohols.

View Article and Find Full Text PDF

Suzuki-Miyaura coupling (SMC), a crucial C-C cross-coupling reaction, is still associated with challenges such as high synthetic costs, intricate work-ups, and contamination with homogeneous metal catalysts. Research intensely focuses on strategies to convert homogeneous soluble metal catalysts into insoluble powder solids, promoting heterogeneous catalysis for easy recovery and reuse as well as for exploring greener reaction protocols. Metal-Organic Frameworks (MOFs), recognized for their high surface area, porosity, and presence of transition metals, are increasingly studied for developing heterogeneous SMC.

View Article and Find Full Text PDF

We report on the synthesis of [2]rotaxanes from vicinal diols through dynamic covalent boronic ester templates, as well as the use of the boronic ester for rotaxane post-functionalisation. A boronic acid pincer ligand with two alkene-appended arms was condensed with a linear diol-containing thread, and ring-closing metathesis established a pre-rotaxane architecture along with a non-entangled isomer. Advanced NMR spectroscopy and mass spectrometry unambiguously assigned the isomers and revealed that the pre-rotaxane was in equilibrium with its hydrolyzed free [2]rotaxane form.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!