Some key secondary metabolism genes are important for driving the infection process of entomopathogenic fungi; however, their chemical substance basis has not been well investigated. Here, mixtures of polyol lipids are discovered, which are synthesized through iterative chain transfer-esterification-hydrolysis cycles catalyzed by serine hydrolase during the release of online highly reducing polyketide intermediates. Importantly, an gene knockout experiment revealed that the synthesis of polyol lipids is necessary for rodlet layer formation on the cell wall of . Our work uncovers an unexpected way for the synthesis of polyol lipids and illuminates a new perspective on their part in significant physiological processes in entomopathogenic fungi.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c15577DOI Listing

Publication Analysis

Top Keywords

polyol lipids
16
entomopathogenic fungi
12
lipids rodlet
8
rodlet layer
8
layer formation
8
formation cell
8
cell wall
8
synthesis polyol
8
serine hydrolase-catalyzed
4
polyol
4

Similar Publications

Some key secondary metabolism genes are important for driving the infection process of entomopathogenic fungi; however, their chemical substance basis has not been well investigated. Here, mixtures of polyol lipids are discovered, which are synthesized through iterative chain transfer-esterification-hydrolysis cycles catalyzed by serine hydrolase during the release of online highly reducing polyketide intermediates. Importantly, an gene knockout experiment revealed that the synthesis of polyol lipids is necessary for rodlet layer formation on the cell wall of .

View Article and Find Full Text PDF

The advancement of bio-based materials derived from renewable resources provides a pivotal strategic approach to address the problems of environmental pollution and scarce fossil resources. In this study, a series of bio-based waterborne polyurethanes (WPUs) with enhanced UV resistance, photothermal effect and corrosion resistance were prepared by using sorbitan monooleate (SP) and castor oil (CO) as vegetable polyols together with the introduction of sodium lignosulfonate modified of diethanolamine (DML). The WPU coatings of only 100 μm thickness, exhibited UV blocking rate > 99 % between 200 and 320 nm.

View Article and Find Full Text PDF

Unveiling the role of mechanical process intensifications and chemical additives in boosting lipase-catalyzed hydrolysis of vegetable oil for fatty acid production: A comprehensive review.

Int J Biol Macromol

January 2025

Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia. Electronic address:

Article Synopsis
  • * Key challenges include the immiscibility of triacylglycerols with water and the lower efficiency of enzymes relative to chemical catalysts.
  • * The review suggests that using chemical additives, particularly a combination of ionic liquids and polyols, can significantly enhance enzymatic hydrolysis efficiency, making the process more effective and less damaging to enzymes.
View Article and Find Full Text PDF
Article Synopsis
  • Chronic inflammation and high glucose levels contribute to poor healing in diabetic skin wounds, affecting the function of keratinocytes, which are crucial for skin repair.
  • This study investigated the impact of high glucose and lipopolysaccharide on the metabolomic changes in keratinocytes, revealing altered levels of 273 metabolites, especially in redox metabolism.
  • The findings indicate that these stressors impair keratinocyte proliferation and migration, potentially suggesting new therapeutic approaches for managing chronic diabetic ulcers.
View Article and Find Full Text PDF

This article explores the important, and yet often overlooked, solid-state structures of selected bioaromatic compounds commonly found in lignin hydrogenolysis oil, a renewable bio-oil that holds great promise to substitute fossil-based aromatic molecules in a wide range of chemical and material industrial applications. At first, single-crystal X-ray diffraction (SCXRD) was applied to the lignin model compounds, dihydroconiferyl alcohol, propyl guaiacol, and eugenol dimers, in order to elucidate the fundamental molecular interactions present in such small lignin-derived polyols. Then, considering the potential use of these lignin-derived molecules as building blocks for polymer applications, structural analysis was also performed for two chemically modified model compounds, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!