Terahertz waves are gathering attention as carrier waves for next-generation wireless communications such as sixth-generation wireless communication networks and autonomous driving systems. Electromagnetic-wave absorbers for the terahertz-wave region are necessary to ensure information security and avoid interference issues. Herein we report a high-performance terahertz-wave absorber composed of a composite of metallic λ-TiO and insulating TiO nanocrystals (λ-TiO@TiO). This material exhibits a strong terahertz-wave absorption with high values for the real (permittivity, ε') and imaginary parts (dielectric loss, ε″) of the complex dielectric constant. Furthermore, the tan(δ) (≡ ε″/ε') values are significantly high, ranging from 0.50 to 0.76 in the frequency range between 0.1 and 1 THz. An ultrathin film with a thickness of 48 μm recorded a reflection loss of -28 dB (99.8% of the terahertz wave is absorbed by the film). A terahertz-wave absorber with such a small thickness has yet to be developed. Not only does the present material exhibit resistance to heat, light, water, and organic solvents, but it can also be economically fabricated to support various applications, including outdoor uses.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c17606DOI Listing

Publication Analysis

Top Keywords

terahertz-wave absorber
12
wireless communications
8
ultrathin terahertz-wave
4
absorber based
4
based inorganic
4
inorganic materials
4
materials wireless
4
communications terahertz
4
terahertz waves
4
waves gathering
4

Similar Publications

Ultrathin Terahertz-Wave Absorber Based on Inorganic Materials for 6G Wireless Communications.

ACS Appl Mater Interfaces

January 2025

Nippon Denko Co., Ltd., 1-4-16 Yaesu, Chuo-ku, Tokyo 103-8282, Japan.

Terahertz waves are gathering attention as carrier waves for next-generation wireless communications such as sixth-generation wireless communication networks and autonomous driving systems. Electromagnetic-wave absorbers for the terahertz-wave region are necessary to ensure information security and avoid interference issues. Herein we report a high-performance terahertz-wave absorber composed of a composite of metallic λ-TiO and insulating TiO nanocrystals (λ-TiO@TiO).

View Article and Find Full Text PDF

ConspectusOver the past two decades, terahertz (THz) technology has undergone rapid development, driven by advancements and the growing demand for THz applications across various scientific and technological domains. As the cornerstone of THz technology, strong THz-matter interactions, especially realized as high THz intrinsic absorption in nanometer-thick materials, play a highly important role in various applications including but not limited to THz absorption/shielding, detection, etc. The rigorous electromagnetic theory has posited a maximum intrinsic absorption of 50% for electromagnetic waves by thin films, and the succinct impedance matching condition has also been formulated to guide the design of highly intrinsically absorbing materials.

View Article and Find Full Text PDF

All-Silicon Polarization-Insensitive Metamaterial Absorber in the Terahertz Range.

Materials (Basel)

April 2024

Key Laboratory of Opto-Electronics Information Science and Technology, Ministry of Education, Institute of Laser and Opto-Electronics, Tianjin University, Tianjin 300072, China.

All-silicon terahertz absorbers have attracted considerable interest. We present a design and numerical study of an all-silicon polarization-insensitive terahertz metamaterial absorber. The meta-atoms of the metamaterial absorber are square silicon rings which can be viewed as gratings.

View Article and Find Full Text PDF

Ultra-broadband and efficient terahertz (THz) absorption is of paramount importance for the development of high-performance detectors. These detectors find applications in next-generation wireless communications, military radar systems, security detection, medical imaging, and various other domains. In this study, we present an ultra-wideband THz wave metasurface absorber (UTWMA) featuring a composite surface microstructure and a multilayer absorbing material (graphene).

View Article and Find Full Text PDF

Compared to other parts of the electromagnetic spectrum, the terahertz frequency range lacks efficient polarization manipulation techniques, which is impeding the proliferation of terahertz technology. In this work, we demonstrate a tunable and broadband linear-to-circular polarization converter based on an InSb plate containing a free-carrier magnetoplasma. In a wide spectral region (∼ 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!