A novel all-fiber optic current sensor (FOCS) is designed specifically for the measurement of large transient currents based on the Faraday effect. A reciprocal symmetric structure is incorporated into the optical sensing loop, and the current dependent phase demodulation is achieved by using a passive optical fiber coupler and the homodyne detection scheme. This design offers several advantages, including structural simplicity, high voltage insulation, low noise, high linearity, and excellent frequency response, and is highly suitable for use in any system of high-voltage, high-power, and high-frequency in nature. A current source based on fast capacitor discharge is used for the bench-test of the FOCS system, and several laser sources with different wavelengths and linewidths have been used to test the FOCS performance. Experimental results show that the phase noise of the laser is independent of both wavelength and linewidth. The sensitivity of the FOCS system has been calibrated against a commercial Rogowski current sensor. This FOCS offers precise and flexible high-current pulse measurements with a measured phase noise of 1.4 × 10-3 rad, using a 1550 nm laser with a 1 kHz linewidth. The fully reciprocal sensing loop ensures that the phase noise remains unchanged as the loop length increases. These features make the FOCS a robust and adaptable tool for high-precision current sensing in challenging environments. Finally, the FOCS system has consistently demonstrated its superior and stable performance in terms of high-frequency response and low noise with minimal dependence on the laser parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0242803DOI Listing

Publication Analysis

Top Keywords

current sensor
12
focs system
12
phase noise
12
sensor focs
8
sensing loop
8
low noise
8
focs
7
current
6
noise
5
development novel
4

Similar Publications

Investigating Smartphone-Based Sensing Features for Depression Severity Prediction: Observation Study.

J Med Internet Res

January 2025

Department of Clinical Psychology and Psychotherapy, Institute of Psychology and Education, Ulm University, Ulm, Germany.

Background: Unobtrusively collected objective sensor data from everyday devices like smartphones provide a novel paradigm to infer mental health symptoms. This process, called smart sensing, allows a fine-grained assessment of various features (eg, time spent at home based on the GPS sensor). Based on its prevalence and impact, depression is a promising target for smart sensing.

View Article and Find Full Text PDF

A novel all-fiber optic current sensor (FOCS) is designed specifically for the measurement of large transient currents based on the Faraday effect. A reciprocal symmetric structure is incorporated into the optical sensing loop, and the current dependent phase demodulation is achieved by using a passive optical fiber coupler and the homodyne detection scheme. This design offers several advantages, including structural simplicity, high voltage insulation, low noise, high linearity, and excellent frequency response, and is highly suitable for use in any system of high-voltage, high-power, and high-frequency in nature.

View Article and Find Full Text PDF

Mechanistic insights and approaches for beta cell regeneration.

Nat Chem Biol

January 2025

Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.

Diabetes is characterized by variable loss of insulin-producing beta cells, and new regenerative approaches to increasing the functional beta cell mass of patients hold promise for reversing disease progression. In this Review, we summarize recent chemical biology breakthroughs advancing our knowledge of beta cell regeneration. We present current chemical-based tools, sensors and mechanistic insights into pathways that can be targeted to enhance beta cell regeneration in model organisms.

View Article and Find Full Text PDF

Air pollution in cities, especially NO, is linked to numerous health problems, ranging from mortality to mental health challenges and attention deficits in children. While cities globally have initiated policies to curtail emissions, real-time monitoring remains challenging due to limited environmental sensors and their inconsistent distribution. This gap hinders the creation of adaptive urban policies that respond to the sequence of events and daily activities affecting pollution in cities.

View Article and Find Full Text PDF

Wearable sensors have broad application potential in motion assessment, health monitoring, and medical diagnosis. However, relying on a specialized instrument for power supply and signal reading makes sensors unsuitable for on-site detection. To solve this problem, a reusable self-powered electrochromic sensor patch based on enzymatic biofuel cells were constructed to realize the on-site visualized monitoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!