Ru(II)-Based Multitopic Hosts for Fullerene Binding: Impact of the Anion in the Recognition Process.

Inorg Chem

GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain.

Published: January 2025

The development of multitopic hosts for fullerene recognition based on nonplanar corannulene (CH) structures presents challenges, primarily due to the requirement for synergistic interactions with multiple units of this polycyclic aromatic hydrocarbon. Moreover, increasing the number of corannulene groups in a single chemical structure while avoiding the cost of increasing flexibility has been scarcely explored. Herein, we report the synthesis of a family of multitopic Ru(II)-polypyridyl complexes bearing up to six units of corannulene arranged by pairs, offering a total of three molecular tweezers. All of them are fixed by the central atom and organized in an octahedral structure. Their fullerene recognition capabilities have been thoroughly demonstrated toward C and C showing that they can reasonably accommodate up to three fullerenes per host in a noncooperative manner. There are, however, some features that diverge from comparable hosts in the literature, such as the low value of several association constants. This behavior, supported by theoretical studies, is attributed to the presence of two noninnocent BAr anions that interfere with the supramolecular binding through ion pair formation. These findings highlight the crucial role of selecting compatible ionic species in supramolecular host design as they can significantly influence the recognition process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.4c04608DOI Listing

Publication Analysis

Top Keywords

multitopic hosts
8
hosts fullerene
8
recognition process
8
fullerene recognition
8
ruii-based multitopic
4
fullerene binding
4
binding impact
4
impact anion
4
recognition
4
anion recognition
4

Similar Publications

Ru(II)-Based Multitopic Hosts for Fullerene Binding: Impact of the Anion in the Recognition Process.

Inorg Chem

January 2025

GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain.

The development of multitopic hosts for fullerene recognition based on nonplanar corannulene (CH) structures presents challenges, primarily due to the requirement for synergistic interactions with multiple units of this polycyclic aromatic hydrocarbon. Moreover, increasing the number of corannulene groups in a single chemical structure while avoiding the cost of increasing flexibility has been scarcely explored. Herein, we report the synthesis of a family of multitopic Ru(II)-polypyridyl complexes bearing up to six units of corannulene arranged by pairs, offering a total of three molecular tweezers.

View Article and Find Full Text PDF

Multitopic Corannulene-Porphyrin Hosts for Fullerenes: A Three-Layer Scaffold for Precisely Designed Supramolecular Ensembles.

Org Lett

January 2025

GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain.

A method to synthesize cofacial dimeric porphyrins bearing eight corannulene units has been developed. It relies on the stability of octahedral CO-capped Ru(II) complexes linked by N-donor ligands. This specific arrangement provides an optimal scaffold to accommodate fullerenes by imposing corannulene groups at a precise distance and relative orientation.

View Article and Find Full Text PDF

Photoinduced Electron Transfer in Encapsulated Heterocycles by Cavitands.

Photochem Photobiol

July 2022

Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.

Host-guest complexation of small heterocyclic (guest) and macrocyclic cavitands (hosts) organic molecules is still to date a very popular, inexpensive approach that bypasses the burdens of conventional covalent synthesis. Understanding the selection criteria of these chemicals is crucial to the design and potential applications of their supramolecular assemblies. This review surveys examples within the last 15 years (2005-2020) of supramolecular complexes in which the interacting photoinduced electron transfer (PET)-based chromophore and quencher fragments are commonly used in the market with reported CAS numbers.

View Article and Find Full Text PDF

Supramolecular Sensing of Chemical Warfare Agents.

Chempluschem

April 2021

Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.

Chemical warfare agents are a class of organic molecules used as chemical weapons due to their high toxicity and lethal effects. For this reason, the fast detection of these compounds in the environment is crucial. Traditional detection methods are based on instrumental techniques, such as mass spectrometry or HPLC, however the use of molecular sensors able to change a detectable property (e.

View Article and Find Full Text PDF

Cone calix[4]arenes and calix[6]arenes bearing two, three, and four short peptide units each having two chiral carbon atoms were prepared. The syntheses were performed by using an efficient modular approach that includes the Ugi preparation of the azido-peptide followed by its reactions with the propargylated calixarenes under CuAAC (Cu(I) -catalyzed azide-alkyne cycloaddition) conditions. The three novel multitopic hosts were probed for their ability to bind metal ions by UV titration, and showed the highest complexation efficiency towards copper(II) and lead(II).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!