This work presents the results of photophysical studies for a newly synthesized BF-based organoboron dye of D-A-D topology. The one- and two-photon properties of the dye are compared with the D-A parent compound and commercially available amyloid marker: methoxy-X04. We demonstrate that the new dye exhibits better optical properties upon binding to amyloids than methoxy-X04, including emission above 600 nm, higher values of 2PA cross section, broader excitation range and higher increment of emission intensity upon binding to amyloids. All these data demonstrate that the new probe is an interesting scaffold for application in two-photon microscopy and amyloid staining.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5cc00243e | DOI Listing |
Inflammopharmacology
January 2025
Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques and tau tangles, leading to cognitive decline and dementia. Insulin-like Growth Factor-1 (IGF-1) is similar in structure to insulin and is crucial for cell growth, differentiation, and regulating oxidative stress, synaptic plasticity, and mitochondrial function. IGF-1 exerts its physiological effects by binding to the IGF-1 receptor (IGF-1R) and activating PI3K/Akt pathway.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
The deposition of amyloid-β (Aβ) aggregates and metal ions within senile plaques is a hallmark of Alzheimer's disease (AD). Among the modifications observed in Aβ peptides, -terminal truncation at Phe4, yielding Aβ, is highly prevalent in AD-affected brains and significantly alters Aβ's metal-binding and aggregation profiles. Despite the abundance of Zn(II) in senile plaques, its impact on the aggregation and toxicity of Aβ remains unexplored.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
This work presents the results of photophysical studies for a newly synthesized BF-based organoboron dye of D-A-D topology. The one- and two-photon properties of the dye are compared with the D-A parent compound and commercially available amyloid marker: methoxy-X04. We demonstrate that the new dye exhibits better optical properties upon binding to amyloids than methoxy-X04, including emission above 600 nm, higher values of 2PA cross section, broader excitation range and higher increment of emission intensity upon binding to amyloids.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, C11, 75185, Uppsala, Sweden.
The existence of transmissible amyloid fibril strains has long intrigued the scientific community. The strain theory originates from prion disorders, but here, we provide evidence of strains in systemic amyloidosis. Human AA amyloidosis manifests as two distinct clinical phenotypes called common AA and vascular AA.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Departments of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA. Electronic address:
The adenosine triphosphate-binding cassette transporter A7 (ABCA7) gene is ranked as one of the top susceptibility loci for Alzheimer's disease (AD). While ABCA7 mediates lipid transport across cellular membranes, ABCA7 loss of function has been shown to exacerbate amyloid-β (Aβ) pathology and compromise microglial function. Our family-based study uncovered an extremely rare ABCA7 p.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!