Polyhydroxyalkanoates (PHA) are bioplastics produced by few bacteria as intracellular lipid inclusions under excess carbon source and nutrient-deprived conditions. These polymers are biodegradable and resemble petroleum-based plastics. The rising environmental concerns have increased the demand for PHA, but the low yield in wild-type bacterial strains limits large-scale production. An improvement in the PHA production can be achieved by genetically engineering the wild-type bacterial strains by removing competitive pathways that divert the metabolites away from PHA biosynthesis, cloning strong promotors to overexpress the genes involved in PHA biosynthesis and constructing non-native metabolic pathways that feed the metabolites for PHA production. The desired monomers in the PHA polymers were obtained by elimination of genes involved in PHA biosynthetic pathway. The chain length degradation specific-gene deletion of β-oxidation pathway resulted in the accumulation of PHA monomers having high carbon chain length. A controlled accumulation of monomers in the PHA polymer was achieved by constructing novel pathways in the bacteria and deleting native genes of competitive pathways from the genome of non-PHA producers. The present review attempts to showcase the novel genetic modification approaches conducted so far to enhance the PHA production with a special focus on metabolic pathway gene deletion in various bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1080/21655979.2025.2458363DOI Listing

Publication Analysis

Top Keywords

pha production
16
pha
12
polyhydroxyalkanoates pha
8
metabolic pathway
8
gene deletion
8
wild-type bacterial
8
bacterial strains
8
competitive pathways
8
metabolites pha
8
pha biosynthesis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!