Fiber metal laminates (FMLs) have garnered significant attention due to their exceptional impact resistance, making them attractive for various structural applications. This review presents recent advancements in understanding the impact behavior of FMLs under low- and high-velocity impact scenarios. Low-velocity impacts, commonly encountered during manufacturing, handling, and tool drops, are discussed, with a focus on damage mechanisms, energy absorption capabilities, and influential factors such as impactor geometry and boundary conditions. Additionally, this review delves into high-velocity impact events, simulating scenarios such as ballistic impacts, highlighting the role of FMLs in mitigating perforation and enhancing damage tolerance. The effects of various parameters on the impact response are critically analyzed. The findings presented herein contribute to the development of lightweight, impact-resistant FML components for aerospace, automotive, and defence applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774786 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2025.e41756 | DOI Listing |
Br J Dermatol
January 2025
Centre of Evidence Based Dermatology, School of Medicine, Faculty of Medicine & Health Sciences, University of Nottingham, UK.
Background: Randomised controlled trials (RCTs) evaluating new systemic treatments for atopic dermatitis (AD) have increased dramatically over the last decade. These trials often incorporate topical therapies either as permitted concomitant or rescue treatments. Differential use of these topicals post-randomisation introduces potential bias as they may nullify or exaggerate treatment responses.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
February 2024
School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
While biotechnologies offer eco-friendly solutions for eliminating air contaminants, there is a scarcity of research examining the impacts of microbial purification of air pollutants on the structure and function of air microbial communities. In this study, we explored a Lactobacillus paracasei B1 (LAB) agent for removing ammoniacal odour. The impacts of LAB on air bacterial community were revealed.
View Article and Find Full Text PDFClin Rheumatol
January 2025
Department of Pediatric Rheumatology, Gazi University Faculty of Medicine, 06500, Besevler, Ankara, Turkey.
Objectives: The International League of Associations for Rheumatology (ILAR) juvenile idiopathic arthritis (JIA) classification was revisited by the Pediatric Rheumatology International Trials Organization (PRINTO) in 2018. Classifications should establish uniform groups to assist physicians in providing optimal care. Therefore, we evaluated changes proposed by PRINTO to highlight their impact on forming consistent groups regarding uveitis and treatment responses, particularly focusing on early-onset anti-nuclear antibody (ANA)-positive JIA.
View Article and Find Full Text PDFJ Assist Reprod Genet
January 2025
Ovarian Physiopathology Studies Laboratory, Institute of Experimental Biology and Medicine (IByME) - CONICET, Buenos Aires, Argentina.
Purpose: This study aimed to evaluate the long-term impact of mild COVID-19 infection and COVID-19 vaccination on ovarian function in patients undergoing assisted reproductive technology (ART). Specifically, we assessed ovarian outcomes between 9 and 18 months post-infection and investigated the effects of COVID-19 vaccines (inactivated virus and adenovirus) on reproductive parameters.
Methods: The study included two objectives: (a) examining ovarian function in post-COVID-19 patients (9-18 months post-infection) compared to a control group and (b) comparing reproductive outcomes in vaccinated versus unvaccinated patients.
Adv Biotechnol (Singap)
October 2024
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
The principle of the "growth-defense trade-off" governs how plants adjust their growth and defensive strategies in response to external factors, impacting interactions among plants, herbivorous insects, and their natural enemies. Mineral nutrients are crucial in modulating plant growth and development through their bottom-up effects. Emerging evidence has revealed complex regulatory networks that link mineral nutrients to plant defense responses, influencing the delicate balance between growth and defense against herbivores.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!