Introduction: Hypertrophic cardiomyopathy (HCM) is a common genetic heart disorder. It is characterized by left ventricular hypertrophy and impaired cardiac function, with forms categorized into obstructive (oHCM) and nonobstructive (nHCM). Traditional treatments address symptoms but not the underlying disease mechanism, highlighting the need for novel therapies. Cardiac myosin inhibitors such as mavacamten and aficamten present potential new treatment options.
Methods: A meta-analysis of randomized controlled trials (RCTs) was conducted following PRISMA guidelines. Studies comparing cardiac myosin inhibitors with placebo were reviewed, and outcomes related to NYHA functional class, Kansas City Cardiomyopathy Questionnaire Clinical Summary Score (KCCQ-CSS), LVOT gradients, and left ventricular ejection fraction (LVEF) were analyzed.
Results: Six RCTs involving 826 participants demonstrated that mavacamten and aficamten significantly improved NYHA functional class and KCCQ-CSS scores. The incidence of treatment-emergent adverse events (TEAEs) and serious adverse events (SAEs) was similar between the treatment and control groups, indicating a comparable safety profile.
Conclusion: Cardiac myosin inhibitors are effective in improving cardiac function and reducing LVOT obstruction in HCM patients. They offer a promising alternative to current treatments, with a safety profile comparable to placebo. Further research is needed to confirm long-term benefits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776027 | PMC |
http://dx.doi.org/10.3389/fcvm.2024.1477487 | DOI Listing |
Biomed Rep
March 2025
Physiology Molecular, Biological Activity Division, Central Laboratory, Sumedang, West Java 45363, Indonesia.
Aging is known to cause increased comorbidities associated with cardiovascular decline. Physical exercises were known to be an effective intervention for the age-associated decline in cardiac function. Exercise caused physiological hypertrophy influenced by Yap/Taz, autophagy and myosin heavy chain (MHC) dynamics.
View Article and Find Full Text PDFFront Cardiovasc Med
January 2025
Department of Cardiology, Vayodha Hospitals, Kathmandu, Nepal.
Introduction: Hypertrophic cardiomyopathy (HCM) is a common genetic heart disorder. It is characterized by left ventricular hypertrophy and impaired cardiac function, with forms categorized into obstructive (oHCM) and nonobstructive (nHCM). Traditional treatments address symptoms but not the underlying disease mechanism, highlighting the need for novel therapies.
View Article and Find Full Text PDFCPT Pharmacometrics Syst Pharmacol
January 2025
Huashan Hospital, Fudan University, Shanghai, China.
Mavacamten is a cardiac myosin inhibitor for adults with obstructive hypertrophic cardiomyopathy (HCM). Dose optimization is performed 4 weeks after starting mavacamten, guided by periodic echo measurements of Valsalva left ventricular outflow tract gradient (VLVOTg) and left ventricular ejection fraction (LVEF). Previously, a population pharmacokinetic (PPK) model was developed and exposure-response (E-R) of VLVOTg (efficacy) and LVEF (safety) was used to identify the mavacamten titration regimen with the optimal benefit/risk ratio, now included in the US prescribing information.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
PhysioLab, University of Florence, 50019 Sesto Fiorentino, Italy.
In maximally Ca-activated demembranated fibres from the mammalian skeletal muscle, the depression of the force by lowering the temperature below the physiological level (~35 °C) is explained by the reduction of force in the myosin motor. Instead, cooling is reported to not affect the force per motor in Ca-activated cardiac trabeculae from the rat ventricle. Here, the mechanism of the cardiac performance depression by cooling is reinvestigated with fast sarcomere-level mechanics.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, 35128 Padova, Italy.
Since its first pathological description over 65 years ago, hypertrophic cardiomyopathy (HCM), with a worldwide prevalence of 1:500, has emerged as the most common genetically determined cardiac disease. Diagnostic work-up has dramatically improved over the last decades, from clinical suspicion and abnormal electrocardiographic findings to hemodynamic studies, echocardiography, contrast-enhanced cardiac magnetic resonance, and genetic testing. The implementation of screening programs and the use of implantable cardioverter defibrillators (ICDs) for high-risk individuals have notably reduced arrhythmic sudden deaths, altering the disease's mortality profile.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!