Phagotrophy is a key nutritional mode for many bloom-forming dinoflagellates that can supplement their carbon and nutrient requirements. However, the environmental drivers and ecological relevance of phagotrophy in algal blooms are still poorly understood. This study evaluates the effect of light and nutrient availability on the phagotrophic activity of three common bloom-forming dinoflagellates (, and ) using three fluorescently labeled preys: bacteria, and the haptophyte . The three dinoflagellates exhibited distinct responses to light and nutrient availability in terms of growth, cell size, prey ingestion and preference. and showed higher cell-specific ingestion rates on bacteria (0.53 ± 0.13 and 1.64 ± 0.39 prey dinoflagellate h, respectively) under co-limited nutrient and light availability, whereas showed higher ingestion on (0.93 ± 0.22 prey dinoflagellate h) under low-light availability alone. However, the three dinoflagellates exhibited the highest carbon and nitrogen-specific ingestion rates when feeding on the larger prey . Our findings indicate that phagotrophy could be of advantage in short periods of light or nutrient limitation and may play different roles during the development of blooms, likely influencing the energy transfer through the food web.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774208 | PMC |
http://dx.doi.org/10.1093/plankt/fbae038 | DOI Listing |
Planta
January 2025
Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
Optimizing environmental factors can significantly increase the growth and secondary metabolite synthesis of hydroponically grown medicinal plants. This approach can help increase the quality and quantity of pharmacologically important metabolites to enhance therapeutic needs. Medicinal plants are key therapeutic sources for treating various ailments.
View Article and Find Full Text PDFJ Plankton Res
July 2024
Écologie Pélagique (DYNECO/PELAGOS), Institut Français de Recherche pour l'Exploitation de la Mer, IFREMER, 29280 Plouzané, France.
Phagotrophy is a key nutritional mode for many bloom-forming dinoflagellates that can supplement their carbon and nutrient requirements. However, the environmental drivers and ecological relevance of phagotrophy in algal blooms are still poorly understood. This study evaluates the effect of light and nutrient availability on the phagotrophic activity of three common bloom-forming dinoflagellates (, and ) using three fluorescently labeled preys: bacteria, and the haptophyte .
View Article and Find Full Text PDFTissue microenvironments are extremely complex and heterogeneous. It is challenging to study metabolic interaction between the different cell types in a tissue with the techniques that are currently available. Here we describe a multimodal imaging pipeline that allows cell type identification and nanoscale tracing of stable isotope-labeled compounds.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
The photoautotrophic nature of cyanobacteria, coupled with their fast growth and relative ease of genetic manipulation, makes these microorganisms very promising factories for the sustainable production of bio-products from atmospheric carbon dioxide. However, both in nature and in cultivation, cyanobacteria go through different abiotic stresses such as high light (HL) stress, heavy metal stress, nutrient limitation, heat stress, salt stress, oxidative stress, and alcohol stress. In recent years, significant improvement has been made in identifying the stress-responsive genes and the linked pathways in cyanobacteria and developing genome editing tools for their manipulation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China. Electronic address:
Microplastic contamination of low-density polyethylene mulch and nutrient loss from fertilizers present significant challenges in the crop-growing. In this study, the focus was on creating a biodegradable film that combines the advantages of plastic film, thermal insulation and water retention, as well as the controlled release of fertilizer. A key innovation was the efficient introduction of low molecular weight and low dispersibility of poplar lignin into chitosan and polyvinyl alcohol matrices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!